‘y exalate

Groovy Scripting Made Easy: A Beginner's Guide to

Mastering the Basics

https://staging.exalate.com

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 2

Table of contents

Chapter 1: Get On with Groovy Scripting
¢ Why Groovy Scripting Makes a Programmer's Life Easy
e Groovy Environment: How to Run Groovy

Chapter 2: Infinite Possibilities with Groovy Scripting
e Groovy for the Plain Old Java Programmer
e Automate Your Way with Groovy Scripts
¢ Integrations Made Easy with Groovy Scripting

Chapter 3: Understanding the Fundamentals Before You Start Coding in Groovy - aka Groovy Scripting Basics
e Commenting a Groovy Code
e Lessis More in Groovy

Displaying the Output in Groovy

Groovy Scripts

Import Statements in Groovy

Groovy Keywords

Chapter 4: Groovy Variables and Data Types
e Numbers

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics

e Strings
e Boolean
¢ Optional Typing with the def Keyword

Chapter 5: Groovy Operators
e Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Range Operator
Safe Navigation Operator (?.)
Elvis Operator (?2)

Chapter 6: Groovy Control Flow Statements
o |f, If/else or Nested If Statement
e Switch Statement
e For Loop
e While Loop
e Do While Loop

Chapter 7: Object Orientation in Groovy Scripting
e Object Orientation in Exalate Scripting

‘y exalate © Exalate 2024

Page 3

BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics

Chapter 8: Groovy Scripting Closures
e Using Groovy Closures in Exalate Scripting

Chapter 9: Groovy Scripts Data Structures
o Lists
e Maps
e Arrays

Chapter 10: Groovy Scripting Regular Expressions
¢ Using Groovy Regular Expressions in Exalate Scripting

Chapter 11: Groovy Exception Handling
Chapter 12: Groovy Testing Framework: the Assert Statement

Chapter 13: JSON Handling in Groovy
¢ JsonBuilder Class
e JsonSlurper Class
¢ JSON Formatting Using Exalate

Chapter 14: Groovy Scripts Networking
¢ Using Groovy Networking Concepts in Exalate

Chapter 15: Best Practices and Tips for Groovy Scripting Development

‘y exalate © Exalate 2024

Page 4

BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 5

Chapter 16: Most Popular Exalate Scripts
¢ 1. Transformers - Converting HTML to Wiki and Others

e 2.Syncing User Mentions, Rich Text, and Inline Images

¢ 3. Syncing a Parent-Child Relationship
e 4, Syncing Multiple Tickets to a Single Issue Using httpClient

¢ 5. Syncing Insights Custom Field

Conclusion

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 6

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 7

Ay

” exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 8

Welcome to this comprehensive Groovy scripting guide! If you are curious to know what Groovy scripting has to offer and how it can be
used in real-world scenarios, then you're in the right place!

We'll dive into the world of Groovy and explore its features and capabilities.

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 9

salesforce

y

4

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 10

” exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 11

“ exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 12

We'll also focus on the role of Groovy scripts in integrations. And see how it supplements integration solutions like Exalate to perform
advanced integrations.

With a lot of practical examples, you'll better understand how Groovy scripting can streamline your coding workflows. So let's get
started!

‘y exalate © Exalate 2024 BOOK DEMO

http://exalate.com
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 13

business woman in a formal suit with a laptop in the office of the business center stands on the steps in the lobby and works
online. Work in a corporation as a marketing financier or lawyer. a successful woman goes to negotiations

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 14

Outdoor shot of young korean woman stands on street with laptop, wears glasses, reads, smiles happily.
This is a complete handbook, so feel free to jump to the chapter of your choice:

e Chapter 1: Get on with Groovy Scripting

e Chapter 2: Infinite Possibilities with Groovy Scripting

e Chapter 3: Understanding the Fundamentals Before You Start Coding in Groovy - aka Groovy Scripting Basics
e Chapter 4: Groovy Variables and Data Types

e Chapter 5: Groovy Operators

e Chapter 6: Groovy Control Flow Statements

e Chapter 7: Object Orientation in Groovy Scripting

e Chapter 8: Groovy Closures

e Chapter 9: Groovy Scripts Data Structures

e Chapter 10: Groovy Regular expressions

e Chapter 11: Groovy Exception Handling

e Chapter 12: Groovy Testing Framework: the Assert Statement

e Chapter 13: JSON Handling in Groovy

e Chapter 14: Groovy Scripting Networking

e Chapter 15: Best Practices and Tips for Groovy Scripting Development
e Chapter 16: Most Popular Exalate Scripts

Chapter 1: Get On with Groovy Scriptingfi

| am always curious about expanding my knowledge, whether it's related to the field | work in or not. And sometimes, | find myself
wondering, “What could | learn today that's completely different from what | already know?”.

‘y exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 15

It's fun to explore new skills and interests, like maybe even taking up swimming! It's just a thought that pops into my head every so
often.

Then, | look around the world of programming. And I'm amazed by the endless opportunities to learn and grow. Programming
languages are like fashion trends that come and go at lightning speed. Keeping up with these trends can be challenging, but staying on
top of the game is quite important.

Learning the Groovy language has proven to be a wise decision for me. With my prior experience in Java and fondness for the language,
it seemed like the perfect choice. Not only is it syntactically similar to Java, but it also reduces the amount of boilerplate code.

Apache defines Groovy as:

A multi-faceted language for the Java platform.

Apache Groovy is a powerful, optionally typed, and dynamic language, with static-typing and static
compilation capabilities, for the Java platform aimed at improving developer productivity thanks to a concise,
familiar, and easy-to-learn syntax. It integrates smoothly with any Java program, and immediately delivers to
your application powerful features, including scripting capabilities, Domain-Specific Language authoring,
runtime and compile-time meta-programming, and functional programming.

Groovy scripting simplifies Java coding, automates recurring tasks, and makes domain-specific language modeling easy. Plus, it
supports ad-hoc scripting.

With Groovy, you get advanced language features like closures, dynamic methods, and the Meta Object Protocol (MOP) on the Java
platform (we will learn all of this, be rest assured).

And your Java knowledge won't become obsolete as Groovy builds on it seamlessly.

‘ exalate © Exalate 2024

http://www.apache.org/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 16

But it is wrong to say that Groovy is only a scripting language. While it certainly functions as one, there's much more to it than meets the
eye.

It can pre-compile into a Java bytecode, integrate into different applications (especially Java-based), be the basis of building a whole
new application, and so much more.

Groovy is also used in major projects like Grails, Jenkins, and Gradle.

As seen it can clearly do much more than just scripting. So labeling Groovy is like trying to fit a square peg into a round hole; it's simply
too versatile to be restricted to a single category.

It's safe to say that when you write a program in Groovy, you are writing a special kind of Java program, with all the power of the Java
platform at your disposal, including the massive set of available libraries.

The only hope is that you learn to write concise code as opposed to the verbose Java syntax.

Let's take a closer look at why Groovy is such an interesting language.
Why Groovy Scripting Makes a Programmer’s Life Easy

It's Friends with Java.

What | mean by being friends with Java:

e Smooth integration with the JVM (Java Virtual Machine), i.e it works as a dynamic scripting language for JVM
¢ Blends seamlessly with existing Java code and libraries
¢ Extends the java.lang.Object class

‘ exalate © Exalate 2024

https://grails.org/
https://www.jenkins.io/
https://gradle.org/
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 17

¢ Implements operator overloading as Java methods, which can be called in Groovy as if they were operators
o Uses Java features like abstract classes and interfaces seamlessly

Calling Java classes or functions from within Groovy code and also doing so in the opposite direction is easy.

For instance, you can still use Groovy Date to access all the methods from the java.util.Date class. And you can also easily call within a
Java class a Groovy class called ‘MyGroovyClass’ by ensuring MyGroovyClass is on the classpath for your Java application.

A really cool thing about Groovy is that it plays well with Java syntax! So you don’t need to worry about learning a new syntax
altogether.

The seamless interplay of Groovy and Java opens 2 dimensions: using Java to optimize code for runtime performance and using Groovy
to optimize code for flexibility and readability.

Itf Supports Dynamic Typing (and Static Typing).

Dynamically typed languages, like Groovy, move type checks, from compile-time to run-time.

Type safety includes handling type (data type) mismatch errors in a programming language. Enforcing type safety can happen at
compile time or run-time.

For instance, in languages like Java (that enforce static typing), you must give a data type to every variable you define. Then the code
gets compiled, and a type mismatch error occurs if the type assigned to the variable and the value do not match.

So you cannot assign a String value to a variable you have defined as an integer (int), i.e String str = 123

Groovy allows you to defer specifying the data type of a variable until runtime, providing greater flexibility.

‘ exalate © Exalate 2024

https://en.wikipedia.org/wiki/Operator_overloading
https://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Date.html
https://www.baeldung.com/cs/type-safety-programming
https://www.baeldung.com/cs/type-safety-programming
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 18

Of course, this can be disadvantageous since it can cause the entire system to crash, but it's a fair price to pay for the features and
flexibility it offers in return.

It Allows Optional Typing

An extension of the above feature is optional typing.

It means you can leave out mentioning the data types while writing your code. It's done with the help of the keyword “def”. We will look
at this in detail a little later.

//when a data type is not specified in Goovy it still belongs to the //type Qbject. It doesn't nean there i

def hello = "Hello Worl d"
It's Object-Oriented

In Groovy scripting, you can leverage all the object-oriented properties and features available in Java.

So you can create classes, call class methods, set properties, and instantiate class objects in Groovy.

It's Loaded With Some Cool Features.

There are a lot of great features that Groovy scripts offer. Discussing all of them is beyond the scope of this blog post.

A few amazing ones are:

‘ exalate © Exalate 2024

https://en.wikipedia.org/wiki/Object-oriented_programming
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 19

e Consider acommon example (I know what you are smiling at, my fellow programmers) ?:
println "Hello World."

In Groovy, you don’t need a semicolon or a parenthesis. Even System.out.printin (in Java) is reduced to printin.

¢ |t doesn’t need to import packages or make it mandatory to specify data types.

inport java.util.*; // Java
Date today = new Date(); //Java
myday = new Date() // G oovy doesn't need a sem colon, nor does it //need to inport the package.

It supports closures, a really awesome feature we will see in a while.

It generates setters and getters automatically at compile time. It's called a POGO (Plain Old Groovy Object).

It's super easy to work with Lists and Maps in Groovy.

It supports operator overloading, albeit makes it easier than Java.

It's exciting to witness an increasing number of developers adopting Groovy lately! It's gaining a lot of attention and momentum in
the industry. Plus, it's equally corporate-backed and has robust community support.

Talking about the features of Groovy is like asking a chef how many ingredients they have in their pantry. Just like a skilled chef uses a
variety of ingredients to create unique and flavorful dishes, programmers can use diverse Groovy features to craft something powerful
and efficient. The features blend so well that coding in Groovy soon becomes second nature, not to forget pure fun.

Building on the flexibility that Groovy offers, there are different ways in which you can start your journey.

Groovy Environment: How to Run Groovyj

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 20

To run Groovy 2.4, ensure you have a Java Runtime Environment (JRE) for Java versions 6,7, or 8 installed on your computer. It is
available for free here.

After this, simply set the JAVA_HOME environment variable to point toward the location of your Java installation.

A detailed installation guide for Groovy is available on its official website. It will walk you through all the latest instructions.

Note: You can also refer to Groovy documentation if you prefer so.

‘ exalate © Exalate 2024

https://www.java.com/en/download/
http://groovy-lang.org/install.html
http://groovy-lang.org/documentation.html
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 21

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 22

Like I haven't stressed enough, you can start using Groovy in different ways. Just open a new tab in your browser
and hit it with the Groovy web console

The web console is a handy way of getting hands-on with Groovy- whether it is for learning or for debugging
small code segments. It’ll save you the trouble of installing a full-blown IDE or an interpreter on your machine. All
the code snippets can be safely and correctly run within it.

All you have to do is type your required script in the white area and click “Execute Script” to view the output.

Groovy web console

println "Hello World"

[su T) [VU N

Actions I i New script i Publish script ;| View recent scripts

| Result | Output

h—lella World

‘y exalate © Exalate 2024 BOOK DEMO

http://groovyconsole.appspot.com/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 23

”

Once you have installed Groovy, you can run it directly as scripts. You can do so via “groovy”, “groovysh”, or “groovyConsole”.
You can even compile Groovy with “groovyc” or run a compiled Groovy script with Java.

If you feel adventurous, you can install a Groovy plug-in for your favorite IDE: Intelli) IDEA plug-in, Netbeans IDE plug-in, Eclipse plug-in,
and other editors.

By now, you might have an idea about how easy it is to work with Groovy. It can be a handy tool. But hey, we all need to be practical as
well, right?

So in the next section, we're going to check out how to use Groovy scripts in real-world situations.

Chapter 2: Infinite Possibilities with Groovy Scriptingli

Depending on your situation and domain, you might want to use the features of Groovy differently.

Groovy for the Plain Old Java Programmer}

One of the most obvious ways to make use of Groovy is by pairing it up with Java programming.

As someone who has been a Java developer, | empathize with the challenges that arise when trying to introduce a new language to the
team, only to face resistance from management who insist on sticking with Java. It's often the case because Java is widely acclaimed
and cherished.

Groovy can be your savior and trusted ally here, allowing you to introduce dynamic behavior on top of your existing Java code while
making it concise. So with Groovy, you can open a plethora of use cases and get the ball rolling on new projects.

‘ exalate © Exalate 2024

https://www.jetbrains.com/idea/
https://netbeans.apache.org/
https://www.eclipse.org/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 24

Let’s consider a simple example here.

I'm sure, as a developer, there must have been countless occasions where you needed to access a file and perform some operations
before closing it (or sometimes forget to close it, resulting in some awkward stares from peers).

Here is how you would use Java to achieve this seemingly simple task.
i nport java.i o.BufferedReader;
i nport java.io. Fil eReader;
i nport java.io.| OException;
public class Fil eProcessor {
public static void main(String[] args) throws | OException {

Buf f eredReader reader = new BufferedReader (new Fil eReader(args[0]));

String line;

while ((line = reader.readLine()) !'= null) {

Systemout. println(line);

reader. cl ose();

}
And with Groovy, bingo!

new File(args[0]).eachLine { line ->
println line
}

See the difference?

It's a win-win for everyone.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 25

So the software application that you have been burning the midnight oil for, can be taken up a notch with the features that Groovy
offers. And your managers remain happy you haven't abandoned Java altogether.

Its support for features like functional programming and metaprogramming allows you to write concise and expressive code, at the
same time providing seamless integration with Java libraries and frameworks.

Automate Your Way with Groovy Scriptsf

Groovy is a perfect language to automate daily, repetitive tasks like extracting data from a data source, processing a batch file, or
generating your quarterly sales report.

With built-in scripting capabilities, you can automate your way forward with Groovy scripting and make your life easier.

If you are the DevOps or the Agile programmer kind and your daily work is managing a bunch of cards and statuses across different
workflows, Groovy can be your genie.

It can build simple automation for everyday tasks or even pull up continuous integration (Cl) and reporting capabilities.

Scriptrunner, an add-on app on the Atlassian marketplace, advocates Groovy and its vast capabilities by offering automation for
everyday Jira tasks. It helps you create custom-scripted fields, design unique workflows, automate bulk actions, and much more.

Groovy can even help you with your testing needs, both unit and functional testing, so your testers feel right at home.

Integrations Made Easy with Groovy Scriptingf]

You can't think of standalone applications in a digitally evolving world.

‘ exalate © Exalate 2024

https://en.wikipedia.org/wiki/Functional_programming
https://groovy-lang.org/metaprogramming.html
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.scriptrunner.com/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 26

As a developer, you might have already felt the need for different software applications and programming languages you use to be
interoperable with each other.

Groovy originated from this motivation.
So it can play a huge role in a lot of different integrations.

You might have used APls and the pain that goes along with making them talk to one another. To make this issue easier, you can use
Groovy to integrate with RESTful APls, SOAP services, and other web services. It is possible because of built-in support for HTTP, JSON,
and XML, making it easy to handle and manipulate data.

Groovy features like support for JDBC and SQL make it easy to integrate it with your data sources like MySQL, Oracle, and PostgreSQL.
And a cherry on top is that you can use this extracted data to generate reports with Groovy as we saw a while ago.

We have all struggled with conflicting message formats and structures. Groovy's dynamic typing gives the flexibility to work with these
formats. So you can use it to integrate with middleware technologies like Apache Kafka, RabbitMQ, and Apache Camel.

Cloud services have taken the world by storm. You can use Groovy to integrate with various Cloud services and applications like AWS,
Azure, and Google Cloud. You can also use it to integrate with other cloud applications like Jira, Azure DevOps, Salesforce, ServiceNow,
Zendesk, GitHub, etc.

You can use Groovy scripting for enterprise integration tasks like ETL, data integration, and application integration. Its support for
functional programming and collections, along with the Java libraries and frameworks within its reach, can be a powerful integration
tool and resource.

Have these concrete examples opened your minds to the world of Groovy and the value it brings to the table?

‘ exalate © Exalate 2024

https://exalate.com/blog/api-integration/
https://exalate.com/blog/jira-integrations/
https://exalate.com/blog/salesforce-integrations/
https://exalate.com/blog/servicenow-integrations/
https://exalate.com/blog/zendesk-integrations/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 27

You might have already started thinking of newer ways to implement your next project using Groovy scripting. Or you might ponder
about how to use the integration prowess it natively supports.

Let’s dig into this thought a little more.
Groovy Scripting in Exalate

Throughout this blog post, we will explore an interesting way in which Groovy adapts to diverse scenarios.

We'll discuss a solution called Exalate that uses Groovy scripts to synchronize information between different applications.

Feel free to skip the Exalate-related sections if you only want to keep your mind occupied with Groovy and get a
hands-on experience faster. However, it wouldn't hurt to quickly scan through and acquire some extra knowledge
along the way.

Before we discuss how Exalate uses Groovy, let's briefly understand what Exalate is in the first place.

Exalate is an integration solution that aims to provide uni or bi-directional synchronizations between different software applications. It
supports integrations for Jira, Salesforce, ServiceNow, Zendesk, GitHub, Azure DevOps, HP ALM, etc.

Now there are many integration solutions available in the market. Then why talk only about Exalate?

Exalate is the only integration solution in the market that uses Groovy scripting to set up advanced, tailor-made integrations with
multiple dependencies and custom data mappings.

So it would be intriguing to study how you can use Groovy scripts for synchronizing information across our favorite platforms.

‘ exalate © Exalate 2024

http://exalate.com
http://exalate.com/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 28

Exalate has its reasons for choosing Groovy as the preferred language. Regarding this, | had a conversation with the chief software
engineer at Exalate, and this is what he had to say:

Basically, when the product was conceptualized, we started looking into options for selecting a language that the
Jira admins would be comfortable with. Exalate started with Jira on-premise as its first connector.

And because Scriptrunner was the most popular addon in the marketplace at that time, and it used Groovy, the
choice was a no-brainer for us.

Another reason why we chose Groovy was because it provided seamless integration with the Jira API. You could
call the Jira API without the need for any translation between Jira’s own language and Exalate scripts, as long as
the scripting language was Java-based.

Finally, we wanted to be able to run within Jira without making the customer install anything on their systems and
without relying on the internet (since some Jira’s are only available within the company network), which means
whatever language we use needs to be executable within Jira’s Java process.

Exalate supports decentralized integration. It uses Incoming and Outgoing sync processors on both sides that wish to interchange
data. These processors allow independent and full control over information exchange.

How to Set Up Your Development Environment in Exalate

The Exalate admin console has Outgoing and Incoming sync processors in the form of "Incoming sync" and "Outgoing sync"
respectively. These windows are present under the “Rules” tab that is displayed when you configure the connection.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 29

For instance, if you want to set up a Jira Zendesk integration, you must first install Exalate on both Jira and Zendesk instances. Then

create a connection in the Script mode.

You then need to configure the Outgoing sync script to determine what information to pass to the other side and an Incoming sync
script that interprets the information received from the other side. You can choose to add, delete, or edit these sync “Rules” according

to your integration use case.

X Errors - Jira [APFC-T1] A test ticket - Jira
@ syedhassani.atlassian.net/plu m
i @ Jira Software Your work Projects Filters Dashboards People Apps Create Q, Search E 0 x .
Apps
Manage apps "
& » ZD‘_t-_:)_Jlra
i @ Active
uth credential Rules Triggers Statistics
NALATE
i i ~ Qutgoing sync @
Getting Started
1 replica.key
ral Setti 1lic
. ons outg clipb
~ Incomin
T
: if not foun E fault
4 ssueType(replica.type?.name, issue.projectkey)?.name ?: T
5
5 . Summ
7 Jdes. t
— 8
py i g pr tocl
Triggers
» Advanced

Entity Sync Status
Documentation EULA Support Reporta bug

© Exalate 2024

‘y exalate

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 30

You must “Publish” the changes and then test the sync upon configuring the scripts.
While using Exalate, you'll come across something called “replica”. You can see it in the image above.

A copy of the original entity transferred to the other side is called a replica. It is a payload containing details of the information
exchange.

Remote Replica A B

A Replica is a copy of an issue which is transferred to the other instance. outgoing sync Utgoing ByK

replica.summary = issue.summary
f YasiE y

In the outgoing sync processor:
replica variable defines the information added to the issue copy
issue variable refers to the original issue

In the incoming sync processor: incoming sync incoming sync
issue variable refers to the issue where the change needs to be

applied. }
replica variable refers to the issue where the change happened. Bt s LS 1k Lanls Immary = replicasummary <

You can learn more about Exalate through its Academy tutorials or get hands-on experience with a step-by-step Getting Started guide
on its documentation.

‘y exalate © Exalate 2024 BOOK DEMO

https://exalate.com/academy/
https://docs.exalate.com/docs/getting-started
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 31

Note: Hereon, I'll include Exalate Groovy scripting examples wherever applicable.

Chapter 3: Understanding the Fundamentals Before You Start Coding in Groovy - aka

Groovy Scripting Basics

Each programming language has its distinct look and feel, but the general structure remains the same. If you are familiar with a few
such languages, following this blog will be easy for you. It'll also help to have some background knowledge of Java.

Nevertheless, | will provide the necessary information for each concept we cover, enough for you to get started with the language. But
you must be aware of general programming concepts: braces, indentation, operators, parenthesis, comments, statement terminators,
and the like.

If you are eager to learn these concepts, move on to the next chapter.
Of course, you can always revisit any section if you feel like you are struggling.

We'll cover a few starters here so you are comfortably settled within the Groovy environment.

Commenting a Groovy Code

Like all programming languages, you can use single-line or multi-line comments in Groovy.

/[/this is a single |ine conment Sone Groovy code here.
[*this is a nulti

multi-multi-Iline conment */

Some Groovy code here.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 32

Less is More in Groovy

As we have already discussed, you can write shorter, more concise, and more expressive code using Groovy scripts.

¢ Parentheses, package prefixes, and semicolons are optional in Groovy. However, in certain situations, like in methods with no
parameters or constructors, parentheses are a good practice.

¢ Using “return” statements is optional in Groovy.

e Type (data type) declarations are optional in Groovy.

e Type casts are optional in Groovy.

¢ Methods and attributes in Groovy are public by default.

¢ You can omit mentioning the “throws” clause in the method signature if a checked expression is thrown.

With this under your belt, let’s study the principle tool we will be using throughout this blog: the println or print statement

Displaying the Output in Groovy

You can use the print or println statement to display the output in Groovy. Classically these methods print the toString value of the
object.

Ignore the other lines of code written in the example below. We will study them a little later. You might already know what a class is if
you are familiar with Java.

cl ass DenpC ass {

static void main(String[] args) {

[/use the print or the println statenent to display the //output.
println 'car'

print 'car’

}

‘ exalate © Exalate 2024

https://en.wikipedia.org/wiki/Return_statement
https://en.wikipedia.org/wiki/Typecasting
https://www.w3schools.com/jsref/jsref_tostring_string.asp
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 33

}?
Groovy Scripts

Groovy scripts are files that hold the “.groovy” extension.

e They can contain any non-specific statements, plain text, class, or method definitions.

e They can be run from the command line or within a Groovy environment.

¢ When a Groovy script is executed, the Groovy interpreter reads the script from top to bottom and executes each statement in turn.
If the script contains method definitions or class declarations, these are compiled into bytecode and loaded into the JVM at
runtime.

e They can also import or use external libraries, such as Java libraries or other Groovy scripts to extend their functionality.

Note: You can externalize Groovy scripts in Exalate so you can use (or reuse) them outside the product scope.

Import Statements in Groovy

You can use import statements in Groovy to implement some functionality provided by libraries.

By default, Groovy imports the following libraries, so you don’t need to worry about importing them.

i mport java.lang.*

inport java.util.*

i mport java.io.*

i nport java.net.*

i nport groovy.lang.*

i nport groovy.util.*

i mport java. mat h. Bi gl nt eger

‘ exalate © Exalate 2024

https://en.wikipedia.org/wiki/Bytecode
https://docs.exalate.com/docs/externalizing-existing-scripts
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 34

i nport java. mat h. Bi gDeci mal

Using Import Statements in Exalate

The most common example of Groovy packages used in Exalate is for transformers. You can use these transformers to convert
information from one specific format to another.

For instance, every application has a different format, Jira - Wiki, Azure DevOps, Salesforce and ServiceNow - HTML and GitHub, and
Zendesk - Markdown.

The following packages can be used to handle these formatting differences:
i mport com atl assi an.jira.conponent. Conponent Accessor
import comatlassian.jira.security.groups. G oupManager
import comatlassian.jira.user. ApplicationUser

i mport java.text.Sinpl eDat eFor mat ;

i mport java.text. Dat eFor nmat ;

Note: You can also check for more information on the packages here.

Groovy Keywords

Keywords are special words that are reserved to perform a certain function. So you cannot use them as a variable or function name.

We will be learning about a few important keywords in the coming sections.

‘ exalate © Exalate 2024

https://stash.idalko.com/projects/EXAPUB/repos/transformers/browse/src/main/groovy/com/exalate/transform
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 35

abstract as assert
boolean break byte

case catch char

class const continue
def default do

double else enum
extends false final
finally float for

goto if implements
import in instanceof
int interface long
native new null
package private protected
public return short
static strictfp super

switch synchronized this

threadsafe throw throws
transient true try
void volatile while

Phew! That was long. | hope you are all set to move further. If not, take a break and come back soon.

There is only one way to hit the road now, to start coding! So let your fingers groove with Groovy and follow on.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 36

Chapter 4: Groovy Variables and Data Types

Consider the following statement:

String str = "This is a string variabl e’

We have declared a variable called str. It belongs to the data type: String. Its value is: ‘This is a string variable’.

Groovy web console

class DemoClass {

1

2

3 static void main(String[] args) {

4 //declare a variable named 'str' of data type String and assign some value to it.
S //then print the str variable

6 String str = 'This is a string variable'

7 println str

8

9

hy

E Execute script P New script Publish script View recent scripts |

This is a string variable

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 37

Variables are named memory locations that have a data type. You'll want to use variables to store some information. You can then use
these variables to perform some operations throughout the program.

Keep in mind:

e Variables are case-sensitive. So, int x = 5 and int X = 5 are two different variables: x and X.

¢ Variable names can include alphabets, numbers, or the underscore sign. It can start with either an alphabet or an underscore, not
a number.

¢ Variables need to be declared. That is, you must specify the data type of the variable either explicitly or using the “def” keyword
(we will cover it soon).

Data types denote what kind of data that variable holds: a string, a character, a boolean, an integer, a decimal, etc.
Groovy has several built-in data types. We will quickly look at each of them.
Numbers

Numbers can be integers (whole numbers) or decimal (floating point) values.

Bl — - =i = T e s T eamnmn morier T e roemns sorwae |

e
1A=s - =25

‘y exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics

The following table summarizes the data types and the range of values under each category.

Data I

Description
type
byte Represents a byte value
short Represents a short number
int Represents an integer
long Represents a long number

Represents a 32-bit floating

float X
point number

Represents a 64-bit floating

double X
point number

Range of values for the data types

-128 to 127
-32,768 to 32,767
-2,147,483,648 to 2,147,483,647

-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807
1.40129846432481707e-45 to
3.40282346638528860e+38

4.94065645841246544e-324d to
1.79769313486231570e+308d

Page 38

Example
(Use the above image for the
reference code)

byteb =2
shorts =2
inti=3

long | = 455552

float f = 15.35

double d = 6.78889

Note: You cannot assign a higher value like 45552 to a short data type since it will be out of its range. For instance,
shorts = 45552, Try it yourself and see the result!

Strings

Strings are used to give some text value to variables. It can be either a single character (char) or a block of text (String).

‘ exalate

© Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 39

Strings can be enclosed in single, double, or triple quotes. Strings enclosed in triple quotes can span across multiple lines.

Strings are formed out of single characters placed in a sequence. So you can access individual characters one at a time. The index
position of the first character is 0, and the last character is one less than the length of the string.

String Interpolation

Groovy web console

class Demo(Class {
static void main(String[] args) {
//define a variable called age
def age = 58
//use string interpolation to display it
println ("The age is ${age}")
//you can even use expressions to interpolate strings
println ("The sum of 5 and 5 is ${5+5}")

}

Ooo~NOUT A WNPRE

o
~ o
—

E Execute script P New script Publish script View recent scripts

Result | Output M

The age is 58
The sum of 5 and 5 is 10

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 40

String interpolation allows you to include variables or expressions (like 5+5) within a string. You can include variables or expressions
with dynamic content without concatenating strings and variables manually.

Whenever an expression is given within ${expression} in a string literal (double quotes), it works as a placeholder. When the code is
executed, the expression is evaluated and replaced by the actual value.

For instance, if the expression says hello ${age}, the aim is to replace age with the actual value. Likewise, if there is an expression
like ${5+5}, it will be replaced with the actual answer 10 at run-time. String interpolation aims to achieve this.

Groovy supports string interpolation.

Note: String interpolation works only for strings in double quotes. Single and triple quotes aren’t valid candidates for
it.

Using String Interpolation in Exalate Scripting

Suppose you want to synchronize comments from one system to another and have a specific requirement for this sync. You want to
mention the original author of the comment from the source side and send it to the destination instance. You also want to sync the
comment creation time.

The Groovy script used in Exalate for this use case would be

entity.comments += replica. addedComments. collect { comment ->
comment . body = "${comment. aut hor.email} commented at ${comment.created}: n${conmment. body}"
coment

}

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 41

Boolean

Boolean is a special data type. You can assign only 2 values to Boolean variables: true or false. It is mostly used in conditional
statements to check whether a value is true or false. You can use it like a regular data type and assign it to variables, methods, or any
other field.

Groovy web console

1 class Democlass {

2

3 static void main(String[] args){
4

5 boolean t = true
6 boolean f = false
7 |

8 println t

9 println f

10 }

11 1}

12

Execute script P New script Publish script View recent scripts |

| Result | Output

true
false

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 42

Optional Typing with the def Keyword

| have been harping about how Groovy scripting is so versatile. Here's a good one.

There are 2 ways to declare (or define) variables (or methods) in Groovy.

The first one is the traditional Java-based static approach, where it is mandatory to assign a data type to a variable name.
The second one, the Groovy way, says that assigning a data type is optional.

So, how do you do that? By using the “def” keyword.

Let's understand it with the help of an example. We have defined 2 variables def X = 6 and def str = “Hello World” and assigned a
numeric value and a text value to both of them respectively. Note here that we didn’t explicitly state the data type and simply used the
keyword “def”.

1 class Democlass {

2

3 static void main(String[] args){

4 //assign a data type to a variable

5 int x = 5

6 //defer assigning the data type and

7 //let Groovy handle it for you
def X = 6

9 def str = "Hello world"

10 //print the values on the console

11 println x

12 println X

13 println str|

14

15 3

@ Execute script B ; New script | Publish script ; View recent scripts

LResuIt Output | Stacktrace

5
6
Hello world

‘y exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 43

Optional typing is the idea of deferring the knowledge of data type until you run the program. So in programming lingo, (data) type
checking will happen at run-time instead of compile-time.

This is achieved using the keyword “def”.
The keyword “def” can also be used with methods, where it is not mandatory to mention the data types for parameters.

When a variable is declared using “def”, Groovy infers the type of the variable based on the value that is assigned to it.

Using the keyword def doesn’t imply that a data type doesn't exist; it's just a Groovy equivalent to an Object in Java.

Note: Groovy can blow your mind away by allowing static type-checking using the @TypeChecked annotation.

Note: You can use optional typing with Exalate scripting just like you would in Groovy.

Chapter 5: Groovy Operators

Operators in a programming language allow you to manipulate data. They help perform some kind of operation on integers, strings, or
booleans.

Arithmetic Operators

In Groovy, you can perform normal math operations like:

¢ Addition (+): Adds two numbers
e Subtraction (-): Subtracts one number from the other

‘ exalate © Exalate 2024

https://docs.groovy-lang.org/latest/html/documentation/core-semantics.html#static-type-checking
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 44

e Multiplication (*): Multiplies two numbers
¢ Division (/): Divides two numbers
e Remainder (%): Returns the remainder of a division operation

And then there is a power operator “**”.

The power operator has two parts: the base and the exponent, like in math. The result will depend on the value of the operands (base
and exponent) and the data type they belong to.

Groovy web console

class DemoClass {
static void main(String[] args) {
println 5 + 6
println 23 - 5
println 78 * 5
println 49 / 7
println 67 % 3
println 2 ** 3
}

Lo ~NOUTI A~ WNPRE

=
S
=

(=3
=

@ Execute script P New script Publish script View recent scripts |

11
18
390
7
1
8

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics

Page 45

Plus, you also can use the usual postfix and prefix operators: ++ (increment) and - - (decrement) within expressions in Groovy.

For instance, x++ uses a postfix operator. It means that the value of ‘X’ is first used in the expression, and then incremented afterward.

A prefix operator, ++x means that the value of ‘X’ is first incremented, and then used in the expression.

You can refer to the example shown below.

Groovy web console

1 class DemoClass {

2 static void main(String[] args) {

3

4 def a = 5

5

6 //postfix increment increments the value of 'a' after multiplication
7 def b = a++ * 3

8 println "The value of b is: ${b}"

9 println "The incremented value of a is: ${a}"

10

11 //prefix increment increments the value of 'a' first then performs multiplication
12 def ¢ = ++a * 3

13 println "The value of a is: ${a}"

14 println "The value of ¢ is: ${c}"

15 }

16 3}

17

ﬁ Execute script P New script Publish script View recent scripts |

(ResuicToutput stackurace 1

The value of b is: 15
The incremented value of a is: 6
The value of a is: 7
The value of c is: 21

‘y exalate © Exalate 2024

BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 46

You can also use the Unary operator in Groovy. A unary operator operates on a single operand, i.e it takes a single input and produces a
single output. They are used to modify the value of a variable or perform a specific operation on it.

Groovy web console

class DemoClass {
static void main(String[] args) {
int a = 5
int b =6

a += a
b -=1

println "The value of a is ${a}"
@ println "The valus of b is ${b}"
11 1
12 1

R OWo~NOYUVTI & WNBRE

E Execute script P New script Publish script View recent scripts

The value of a is 10
The valus of b is 5

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 47

Relational Operators

Relational operators are used for comparing two variables, values, or objects. So the two values can be equal, greater than, smaller
than, or not equal to.

It returns a boolean value (true or false) based on the comparison made.

Operator Description
== Checks if the two values are equal

1= Checks if the two values are not equal

< Checks if one value is less than the other

> Checks if one value is greater than the other

<= Checks if one value is less than or equal to the other

>= Checks if one value is greater than or equal to the other

Here is an example to demonstrate some of the operators.

class DemoClass {
static void main(String[] args) {

1

2

3

4 def a= 6
5 def b =5
6 def c = 6
7

8

//== checks if the values are equal
9 println "The values of a and ¢ are equal: ${a==c}"

11 // 1= checks if the values are different
2 println "The values of a and b are different: ${a!=b}"
}

[Resllll Output | Stacktrace

fThe values of a and c are equal: true
TThe values of a and b are different: true

‘y exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 48

Logical Operators

Logical operators are used to evaluate boolean values and return a boolean result. Groovy supports 3 logical operators:

e Logical AND (&&): returns true if both operands are true, false otherwise
e Logical OR (|]): returns true if at least one operand is true, false otherwise
e Logical NOT (!): returns the opposite boolean value as that of the operand

Groovy web console

1 class DemoClass {

2 static void main(String[] args) {

3 //Groovy supports 3 logical operators: & & (AND) , |l (OR) and ! (NOT)
4

5 println !true

6 println false & false |

7 println true || false

8 }

9

¥

'z

Execute script P New script Publish script View recent scripts |

[Resute Joutputstackerace H

false
false
true

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 49

Bitwise Operators

Bitwise operators are operators that perform operations on the binary representation of integer values.

Bitwise operators are used for int, byte, short, long, or Biglnteger. If you use bitwise operators with an int and a long, then the result will
be long, between a Biginteger and a long, then the result will be a BigInteger.

In short, the result will always be the largest numerical data type.
There are four bitwise operators that Groovy supports:

AND operator (&): returns a value where each bit is set to 1 only if both operands have a corresponding bit set to 1 (e.g: x&y)

OR operator (]): returns a value where each bit is set to 1 only if either operand has a corresponding bit set to 1 (e.g: x|y)

XOR (exclusive or) operator (*): returns a value where each bit is set to 1 only if exactly one of the operands has a corresponding
bit set to 1 (e.g: xy)

Negation operator (~): returns a value where each bit is flipped from 1 to 0 or from 0 to 1 (e.g ~x)

Groovy also offers three bitwise shift operators:

e Left shift operator (<<): shifts the bits of the first operand to the left by a number of positions specified by the second operand (e.g:
X <<2)

¢ Right shift operator (>>): shifts the bits of the first operand to the right by a number of positions specified by the second operand
(e.g:x>>2)

¢ Right shift unsigned (>>>): shifts the bits of the first operand to the right by a number of positions specified by the second
operand, filling the leftmost bits with 0’'s instead of preserving the sign bit like the regular right shift operator (>>)

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 50

Bitwise operators are typically used while working with low-level binary data, such as when implementing networking protocols or
device drivers. They can also be used in other contexts when optimizing certain algorithms or data structures.

Note: You can learn more about Bitwise operators here.

Range Operator|]

The range operator is used to create a sequence of values that have a starting and an ending point. It is represented by two dots (..) and
can be used to create a range of integers, characters, and other data types.

\.J OJOAY \ v e I \J L J -

1 class Democlass {

2

3 static void main(String[] args){
4

5 for (i in 1..5) {

© println(i)

7

8

9

R
)
-

W Execute script » : New script Publish script View recent scripts |

E_IRES““ Output Stacktrace |, il

ube WN =

‘y exalate © Exalate 2024 BOOK DEMO

https://groovy-lang.org/operators.html#_bitwise_operators
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 51

Range operators can be used in conjunction with other Groovy scripting data structures like lists, arrays, or collections. It can be useful
when working with large data sets or when generating sequences of values.

Safe Navigation Operator (2.)

Before we learn about the safe navigation operator, let's see what a dot(.) operator is.
Like Java, Groovy also uses the dot (.) operator to access the class members and functions.

In the example shown below, we have declared a class called Company that has a name and address. To access a class variable (or
method) we create an object of the class. Then use the dot operator after the name of the object followed by the variable (or method)

name.

So if the object is def acme = new Company/(), we access the name as acme.name.

class Company {
String name
String address
}
def acme = new Company()
acme.name = "ABC Corp"

println "The name of the company is ${acme.name}"

B OWo~NOUTA WN R

0

@ Execute script P New script Publish script View recent scripts

{Result Output || Stacktrace

The name of the company is ABC Corp

‘y exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 52

Now, what happens when you execute the code below?

Groovy web console

println "The name of the company is ${acme.name}"

1 class Company {

2 String name

3 String address
4 3}

5

6 def acme

7

8

9

W Execute script P New script Publish script View recent scripts

Result | Output | Stacktrace

java.lang.NullPointerException: Cannot get property 'name' on null object
at Scriptl.run(Scriptl.groovy:8)

” exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 53

It throws a NullPointerException, a classic pain in the neck situation. Sometimes this exception can make your entire system crash.
The safe navigation operator was born out of the need to avoid the NullPointerException.

Instead of a single dot, it has a question mark followed by a dot(?.). If the first argument or operand is null the entire expression will be
null. It won't throw an exception but just return the value null, not breaking anything in the process.

Another reason the safe navigation operator is so popular is that it can simplify your code.

Consider the example shown below.

Safe Navigation operator - simplify code

Without 2. operator

// company can be null,
if (company != null & company.getAddress() != null & company.getAddress().getStreet() != null) {

0
1
2 println company.address.street.name
3

} b

With 2. operator

®| // company can be null.
1| println company?.address?.street?.name

“ exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 54

Note: We will learn more about the if loop in a while.

Using Safe Navigation Operator In Exalate Scripting

As we saw in this section, the Safe Navigation operator (?.) is used to avoid the NullPointerException.
Exalate uses this operator in a simple yet innovative way.
For instance, you want to access the email property of a user while syncing the reporter from a Jira instance.

We can use the operator in the following manner.

i ssue. reporter = nodeHel per.getUserByEmail (replica.reporter?. email)

The above line ensures that if the email address of the reporter isn’t found, then the Safe Navigation operator would return a null value
instead of throwing an exception.

Elvis Operator (?:)

Many of us have grown up listening to Elvis. Let’s read about the Elvis operator in Groovy now.

Let's start with the following example:

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page b5

The Elvis operator (?:) is a shorthand operator that allows you to simplify null checks in your code. It's often referred to as “ternary
operator for null safety”.

As seen in the example above, if value1 is not null then it simply picks it up and assigns it to the result. If the value1 is null then pick
value2 and assign it to the result. So you can assign a sensible default value in case one of the values is null.

The Elvis operator can also be used in method calls or as a part of complex expressions. It is useful to write a more concise and
readable code that handles null values elegantly.

Groovy allows you to overload the various operators you learned in this section. This concept is called operator

overloading.
Operator overloading allows you to redefine the behavior of built-in operators when applied to your custom
objects.

Using Elvis Operator in Exalate Scripting

We saw how the Elvis operator allows you to simplify null checks in your code and assign sensible default values in case the code
encounters a null value.

Say, you want to assign a default value when syncing some information from Jira to Zendesk. In Jira, the description for the ticket is
optional, while in Zendesk, it's mandatory.

So your Incoming sync script in the Zendesk instance would look like this.

entity.description = replica.description ?: "No description provided"

‘ exalate © Exalate 2024

https://www.logicbig.com/tutorials/misc/groovy/operator-overloading.html
https://www.logicbig.com/tutorials/misc/groovy/operator-overloading.html
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 56

The above script ensures that if an issue doesn’t have a description in Jira, “No description provided” will be auto-filled as the fallback
description in Zendesk.

Now that your mind is operated enough on Groovy, let’s take you for a loop ride.

Chapter 6: Groovy Control Flow Statements

Groovy supports all the control flow structures that Java offers. So you can use the if-else, for, while, do-while, and switch statements.

Control flow structures alter the flow of the program. So instead of statements executing sequentially, they run in an order specified by
the control statement.

If, If /else or Nested If Statement

The 'if' statement evaluates a condition, and if the result is 'true’ then statements preceding the truth (if statement) are executed,
otherwise, the statements preceding the false (else statement) are executed.

You can skip the 'else' statement and only use the 'if' condition.

You can even use nested ‘if’ loops in Groovy.

‘ exalate © Exalate 2024

https://groovy-lang.org/semantics.html#_if_else
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 57

You can also use a short-hand way of writing a long if-else statement by using the ternary operator.

If the condition is true, then expression1 is executed, otherwise expression2.

condition ? expressionl : expression2
Using the If Statement in Exalate Scripting

The use of the ‘If' statement in Exalate can be varied because you can do a variety of things based on the values received from the other
side or modify the values you want to send to the other side the way you want.

Suppose in Jira, you want to create an issue in a particular project. You also want to create an issue of a particular issue type based on
the value of a field present in the replica.

You can use the following code:

[1'x" is the value of the field in the replica you are testing agai nst.

if (replica.x == "abc"){

i ssue. proj ect Key = ABC

i ssue.typeNane = "Task"

else if (replica.x == "def){

I ssue. proj ect Key = DEF
i ssue.typeNane = "Story"

Switch Statement

A switch statement allows a program to perform different actions based on the value of a variable or an expression.

‘ exalate © Exalate 2024

https://groovy-lang.org/operators.html#_ternary_operator
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 58

It provides a way to test the value of an expression against multiple cases and execute different blocks of code depending on which
case matches the value. The expression being evaluated is compared against each of the cases, and when a match is found, the code
block associated with that case is executed.

The switch statement is often used as an alternative to a series of if-else statements, particularly when there are multiple conditions to
check.

The variable or expression you need to evaluate must be given in the round brackets after the keyword switch. For the cases, use the
keyword 'case' followed by the actual value you want to test, and finally a colon (:). Use the break statement after every case. The entire
switch block is enclosed within curly braces {}.

1 class DemoClass {

2 static void main (String[] args)
3 {

4 def day = "Tuesday"

5

6 switch (day) {

7 case "Monday":

8 println "Today is Monday"

< break;

10 case "Tuesday":

11 println "Today is Tuesday"

1172 break;

13 default:

14 println "Today is not a weekday"
15 }

16 1

17 1

XS (LLEM Execute script P New script Publish script View recent scripts

{Result Output | Stacktrace

Today is Tuesday

‘y exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 59

A variable day is defined and you switch on the value of the day, i.e. Tuesday. The second case turns true when the value of the variable
day matches “Tuesday”.

So the output of the second case is printed and then the “break” statement is executed.

We use the “break” statement to exit the case once the code block has been executed. When none of the case
conditions are true, the “default” statement gets executed. It's optional.

For Loop

Groovy supports 'for' loops where you can iterate over a sequence of values, such as a range of numbers or a list of items. You can use
'for' loops with arrays, collections, Maps, etc.

The actual condition for which you need to run the for loop is given in round brackets. For instance, in the second example shown
below, print the value of 'i' 5 times. The condition to check whether the value of 'i' has reached 5 and incrementing (or decrementing)
the value after each iteration of the 'for' loop is given within the round brackets. The actual statements that need to be executed within
the 'for' loop are mentioned in curly brackets {}.

1 class DemoClass {

2 static void main (String[] args)

3 {

4 //an array of numbers

5 def numbers = [1, 2, 3, 4, 5]

6 //iterate through each number in the array to print the value
7 for (number in numbers) {

8 println number

10 //use for loop to print values in a range
11 for (1 in 1..5) {

12 println i

13 }

5 3
16 }

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 60

Using For Loop in Exalate Scripting

You can use the “for” loop with Exalate.

If you want to store some information from a user-defined field in the description field of an issue in Jira, you can do so as follows:

def p =""

for(int i=0; i<replica.custontields."10035". val ue[0]. approvers.size(); i++)

{

p += replica.custontields."10035". val ue[O] . approvers[i].approver.displayNane.toString() + " : " + replica.cus
}

i ssue. description = p

Note: For loops are not always the most elegant solution to use. There are other methods like .each(), .find(), and
.collect(), that we’ll see in a while which serve the same purpose and are a better option.

While Loop

The 'while' statement will execute a block of code repeatedly till a condition is true. The condition is evaluated at the beginning of each
iteration of the loop. If it is true the code inside the loop is executed. This repeats until the condition remains true.

The condition is given inside round brackets after the keyword 'while'. The entire loop is then enclosed within curly brackets {}.

In the example shown below, the condition checks the value of “i". It prints this value till “i” becomes equal to 5. For every iteration, the

value of “i" is incremented.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 61

Do While Loop

The 'do-while' statement is a variation of the while statement, where the condition is evaluated after the first iteration of the loop,
ensuring the block is executed at least once.

Thereon, for every iteration, the code in the 'do-while' block is executed until the condition remains true.

Chapter 7: Object Orientation in Groovy Scripting|]

If you're familiar with Java, you might already know most object-oriented programming concepts like classes, objects, interfaces, etc.
Groovy is a full-fledged object-oriented programming language; everything is an object.
You can create classes in Groovy like you can in Java.

A class is like a blueprint that defines the structure and behavior of objects. It has a set of properties (or attributes) and methods (or
functions).

Properties hold the data within the class, and the methods are operations you perform on that data.

In the following example, we have defined a class called Student that has a few properties: name, age, and grade. It has a method called
sayHello to print the students' information. We create an instance (object) of the class called "student" (class names are case
sensitive, so "student" is different from the class "Student") and give values to its properties.

Then we call the sayHello method to print those values. As seen, you can access individual properties and methods of the class with
the dot(.) operator.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 62

You can control the visibility, that is, which methods and properties are accessible outside of the scope they are defined in through the
usual access modifiers: public, private, and protected.

By default, properties, and methods are public, but you can use other access modifiers to change the visibility.

You can also create constructors for the classes you define. Constructors are methods used to initialize the objects of a class. A
constructor has the same name as that of the class.

Plain Old Groovy Object (POGO) is a simple class in Groovy where you don’t need to define setter and getter methods (constructors)
since Groovy will automatically generate them for you.

Groovy supports inheritance, where the child class inherits properties and methods from the parent class. An inherited class is defined
by the keyword: “extends”.

cl ass Student extends Person {
i nt grade

voi d sayHel l o() {
printin("Hello, ny name is ${nane}, | am ${age} years old, and | amin grade ${grade}.")

}

You can also create interfaces in Groovy. An interface acts like a contract that the class must adhere to. Interfaces only consist of a list
of methods for which no implementation (method body) is provided. The class that “implements (a keyword)” an interface must provide
the method body, i.e, the implementation. Interface methods can be public and abstract. The properties of the interface can be public,
static, and final.

//define an interface Speaker with a single nmethod speak

i nterface Speaker {
voi d speak()

‘ exalate © Exalate 2024

http://javatpoint.com/access-modifiers
https://www.w3schools.com/java/java_constructors.asp#:~:text=A%20constructor%20in%20Java%20is,of%20a%20class%20is%20created.
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 63

/la class called George inplenents the interface and defi nes
//a met hod body for the speak nethod
cl ass CGeorge inplenents Speaker {
voi d speak() {
println "George is speaking"
}

}

You can also create abstract classes or methods in Groovy scripting. It is similar to interfaces but can contain method implementation.
You cannot create an object of an abstract class. They can be created by using the “abstract” keyword.

You must provide an implementation for the abstract methods if you create a class that inherits the abstract class.
/* We have defined an abstract class Animal with a single abstract nmethod call ed speak() and a non-abstract r
abstract class Animal {

abstract void speak()

void run() {
println("The animal is running.")
}

Object Orientation in Exalate Scripting

At the heart of Exalate is a replica that works as a payload to pass information between two applications. The replica itself is an object,
and everything within it is also an object.

So, let's consider the example of "status" in a Jira issue. Whenyou say r epl i ca. st at us. naneg, you're using the same object-oriented
concepts we discussed earlier. We use the dot (.) operator to access the name property of the status object.

‘ exalate © Exalate 2024

https://www.javatpoint.com/abstract-class-in-java
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 64

Chapter 8: Groovy Scripting Closures

Groovy closures is an interesting concept. Closures are anonymous blocks of code performing some function. They are defined within
curly brackets: {}. A closure can contain multiple statements.

You can assign them to a variable and call it as a function (or method) with a return value or you can even use them as arguments to a
function. The block of code gets passed around and executed at a later time, more like a “function-on-the-go”.

Groovy closures are a powerful way to write flexible or reusable code; they also save you a lot of time and make the code concise.

Groovy web console

//define a method multiply that multiplies 2 values

//the code in curly brackets is a closure

//The -> character separates the arguments from the closure body.
def multiply = {x,y -> return x*y}

println multiply(3,4)

oo pWMNBRE

E Execute script P New script Publish script View recent scripts

12

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 65

You can see a lot of use for closures in Groovy data structures.

That brings us to our next chapter: Groovy data structures.

Using Groovy Closures in Exalate Scripting

Perhaps, the most common and popular way of using Groovy Closures in Exalate is when you want to manage the comment visibility
between different applications.

In Jira Service Management, you can create comments as internal or public. And you want to filter and send only public comments from
Jira to the destination instance.

You can do so using the following code snippet:

//the l'it.internal enclosed within curly brackets (G oovy C osures) //ensures
only public comments are saved in replica to be send over //to the
destination side.

replica.coments = issue.coments.findAll { 'it.internal }

Chapter 9: Groovy Scripts Data Structures

We have seen data types like int, long, short, etc. These are called primitive data types.

Data structures are collections of these primitive data types in a list, an array, or a map format. We'll look at them one by one.

Lists

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 66

Groovy Lists allow you to store a collection of data. You can think of a List as a sequence of items, like your grocery or to-do list.

To create a List in Groovy scripts, enclose it within square brackets [and separate the items within the list with a comma (,).

def nyG oceryList = ["apples”, "bananas", "bread", "mlKk"]

Lists are a one-dimensional data structure. The items in a List can be primitive data types, or they can be object references.

Groovy web console

//a 1list of numbers
def numberList = [11,12,13,14]

//a list of strings
def languages = ["Angular", "Java", "Groovy"]

println "The number list has the following elements: ${numberList}"
println "The lanuguages are: ${languages}"

Ooo~NOUTL A WN R

E Execute script P New script Publish script View recent scripts

Result | Output m

The number list has the following elements: [11, 12, 13, 14]
The lanuguages are: [Angular, Java, Groovy]

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 67

Some List Methods

As we saw, Lists are sequences of items. So to perform some operations on Lists you can iterate over the list items one-by-one through
indices.

The first item has an index of 0 and refers to the first item in the list.

There are a lot of other operations you can perform on Lists. They allow you to read, add, remove items from the list, and do much more.
We’'ll see a few of them.
each() Method

The each() method helps you iterate over all the items in the List and perform some operation on them. It's a convenient way to apply
the same operation to every item on the List.

I VUUVUVYYVY WY 9 \J @

def list = [1,2,3,4]

1

2

3 //"it" is a Groovy keyword
4 Tlist.each {println it*2}

5

m Execute script P New script Publish s¢

E Result | Output | Stacktrace —

i, 2, 3, 41

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 68

find() Method

The .find() method allows you to search for a specific item in a list based on a condition you specify. It helps you find the first item within
the list.

Groovy web console

def list = [21,4,55,78]

println "The first value greater than 50 is ${list.find {it>50}}"

A~ WN R

W Execute script P New script Publish script View recent scripts

m Output || Stacktrace

khe Eirst valpe greater than 50 is 55

” exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 69

findAll() Method

The findAll() method works in the same way as the find() method. The only difference is that the findAll() method returns all the items
that match the criteria instead of only the first item.

Continuing the above example.

Groovy web console

def list = [21,4,55,78]

println "The first value greater than 50 is ${list.findAll {it>50%}}"

S WN R

W Execute script P New script Publish script View recent scripts

m Output || Stacktrace

The first value greater than 50 is [55, 78]

” exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 70

collect() Method

The .collect() is used to manipulate the list and return the manipulated list. It transforms the list into something else.

In the example shown below, we create a new list by multiplying all items in the old list by 2.

Groovy web console

1 def oldList = [1, 2, 3, 4, 5]

2 def newList = oldList.collect { it -> 1t 223

3 println("Original List: ${oldList}") println("New List: ${newList}")
4

m Execute script P> New script Publish script View recent scripts |

m Output || Stacktrace

Qrdgdnal Eigsts [l 25 3 4. 5]
ey LisE: |2 4° 6 8 10}

” exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics

Some More List Methods

A few more list methods are:

Method
name

add()

contains()

get()

Description

Adds a new item to the end of the list.

Allows you to check if a particular item is present in the list or not. It
returns a boolean value.

Allows you to retrieve a specific item from a list based on its index
position.

‘ exalate © Exalate 2024

Page 71

Usage

def myList = [1, 2, 3, 4, 5]
mylList.add(6)

printin("List with added element:
${myList}")

def mylList = [1, 2, 3, 4, 5]

def result = mylList.contains(3)

printin("Result: ${result}")
def myList =[1, 2, 3, 4, 5]

def result = myList.get(2)

printin("Result: ${result}")

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics

isSEmpty() Allows you to check if a list is empty or not. It returns a boolean value.

minus() Allows you to create a new list by removing specific items from the list

Allows you to create a new list by adding specific items to an existing

plus() list.

‘ exalate © Exalate 2024

Page 72

def mylList = [1, 2, 3, 4, 5]

def emptylList = []

def resultl = myList.isEmpty()
def result2 = emptyList.isEmpty()

printin("Resultl: ${resultl}")
printin("Result2: ${result2}")

def mylList = [1, 2, 3, 4, 5]

def newlList = myList.minus([3, 4])
printin("Original List: ${myList}")
printin("New List: ${newList}")
def myList = [1, 2, 3, 4, 5]

def newlList = myList.plus([6, 7])

printin("Original List: ${myList}")
printin("New List: ${newList}")

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics

pop() Allows you to remove the last item from the list and return that item.

Allows you to remove a specific item from the list. It removes the first

remove() .
occurrence of the item.

Allows you to reverse the order of the items in the list. It modifies the

reverse .. . e s
0 original list and returns the modified list.

‘ exalate © Exalate 2024

Page 73

def mylList = [1, 2, 3, 4, 5]
def lastElement = mylList.pop()
printin("Original List: ${myList}")

printin("Last Element:
${lastElement}")

def myList =[1, 2, 3, 4, 5]

myList.remove(3)

printin("Original List: ${myList}")
def mylList = [1, 2, 3, 4, 5]

mylList.reverse()

printin("Reversed List: ${mylList}")

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 74

def mylList = [1, 2, 3, 4, 5]

Allows you to fetch the number of items in the list. It returns an integer

size() denoting the size of the list def listSize = myList.size()
printin("List Size: ${listSize}")
def myList =[5, 2, 3, 1, 4]
sort() Allows you to sort the elements in the list. It modifies the original list and myList.sort()

returns the sorted list.

printin("Sorted List: ${myList}")

Using Groovy Lists in Exalate Scripting

One of the most common examples of Lists in Exalate scripting could be when syncing sprints in Jira.

[1Only the sprints belonging to the following Board IDs will be //synced.
def boardlds = ["50", "80", "130", "144"]

//Here, boardIDs is the |list of board IDs we want to sync.

/[/We use the .find nmethod of the List data structure

if(entityType == "sprint" && boardlds.find{it == sprint.originBoardld}){
replica. name = sprint. nane

replica.goal = sprint.goa

replica.state = sprint.state

replica.startDate = sprint.startDate

replica.endDate = sprint.endDate

replica.originBoardld = sprint.originBoardld

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 75

Maps

Maps represent an unordered collection of items in the format of a key:value pair. The keys and values are separated using colons and
each key/value pair is separated by commas. The entire set of keys and values are enclosed in square brackets.

The key works like an index to search for the value. They are also called associative arrays or dictionaries in some programming
languages.

Groovy web console

]

1 //creating a map

2

3 def hairColor = [

4 "Maria": "Blonde",
5 "Peter": "Brown",
6 "Sean": "Black"

7

8

9

def color = hairColor["Maria"]

10 println "Maria's hair color is ${color}"
11

@ Execute script P New script Publish script View recent scripts |

Maria's hair color is Blonde

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 76

Some Map Methods

Like Lists, there are methods you can use to manipulate the items in maps.

We'll discuss a few examples.
each() Method

The .each() method is used to iterate over maps and perform a specific operation on each of its key-value pairs.

Groovy web console

1 //creating a map
2

3 def ageMap = [
4 "Maria™: 23,
5 "Peter": 16,
6 "Sean": 50,
7 "John": 38

8 1

(e}

//iterate over each key-value pair |

10 ageMap.each {entry -> println "${entry.key} is ${entry.value} years old"}
11

E Execute script P New script Publish script View recent scripts |

(Resue outpu T stackurace

Maria is 23 years old
Peter is 16 years old
Sean is 50 years old
John is 38 years old

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 77

find() Method

This method can be used to search for a key-value pair in a map that matches a given value based on a condition. The find() method
returns the first key-value pair in the map that matches the given condition, or null if a match isn't found.

Groovy web console

1 //creating a map
2

3 def ageMap = [
4 "Maria": 23,
5 "Peter": 16,
6 "Sean": 50,
7 "John": 38

BN]
9 //iterate over each key-value pair

10 println ageMap.find {it.value > 20}
11

m Execute script P New script Publish script View recent scripts

Maria=23

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics Page 78

findAll() Method

The findAll() method is used to search for all the key-value pairs in a map that matches a given value based on a condition. The findAll()
method returns a new map that contains all the key-value pairs in the original map that match the given condition.

Groovy web console

]
//1iterate over each key-value pair

10 println ageMap.findAll {it.value > 20}
11

1 //creating a map
2

3 def ageMap = [
4 “Maria : 23,
5 "Peter": 16,
6 "Sean": 50,
7 "John": 38

8

9

W Execute script P New script Publish script View recent scripts

|[Maria:23, Sean:50, John:38]

‘y exalate © Exalate 2024 BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics

Some More Map Methods
A few more map methods are

Method

Description
name

collect()

inject()

get() is not found.

‘ exalate

Iterates over each key-value pair in the map and executes a
closure that transforms the key-value pair into a new value.

Iterates over each key-value pair in the map and
accumulates a value by executing a closure on each pair.

Returns a value for the given key, or a default value if the key

© Exalate 2024

Page 79

Usage

def originalMap = [a: 1, b: 2, c: 3]
def newMap = originalMap.collect { key,
value ->["${key}", value * 2] }
printin "Original map: ${originalMap}"
printin "New map: ${newMap}"
//use inject to calculate the sum of //all
values in a map
defmap = [a: 1, b: 2, c: 3]
def sum = map.inject(0) { acc, key, value -
>

acc + value
}
println "Sum of values: ${sum}"
defmap = [a: 1, b: 2, c: 3]
def value = map.get("b")
printin "Value of 'b' is: ${value}"

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics

pUt() one.

Adds a new key-value pair to the map or updates an existing

remove() Removes a key-value pair from the map for a given key.

containsKe)
¥0 otherwise.

‘ exalate

Returns true if the map contains the given key, false

© Exalate 2024

defmap = [a: 1, b: 2, c: 3]

map.put("d", 4)

map.put("b", 5)

println "Map after using the put method:
${map}"

defmap = [a: 1, b: 2, c: 3]
map.remove("b")

println "Map after removing 'b': ${map}"

defmap = [a: 1, b: 2, c: 3]

def hasB = map.containsKey("b")
def hasD = map.containsKey("d")

printin "Map contains 'b': ${hasB}"
println "Map contains 'd': ${hasD}"

Page 80

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 81

defmap = [a: 1, b: 2, c: 3]

def has2 = map.containsValue(2)

Returns true if the map contains the given value, false]
P 9 def has4 = map.containsValue(4)

containsValue() .
otherwise.

println "Map contains value 2: ${has2}"
printin "Map contains value 4: ${has4}"

Using Groovy Maps in Exalate Scripting

There are a lot of use cases for Maps in Exalate. You can map issue types, priorities, statuses, etc between two systems and perform
some sync operations on them.

/*We have mapped the different statuses in a map vari abl e called statusMap.
Based on the value of the renpte instance's status val ue, the

correspondi ng correct local status is fetched and assigned to the entity. */
def statusMap = |

"Done": "Resol ved",

“In Progress”": "In Action”

def renoteStatusNanme = replica. status. nane
i ssue. set St at us(st atusMap[renot eSt at usNane] ?: renoteStat usNane)

Arrays

An array is a fixed-size collection of items of the same data type. So you can create an array of integers, long or strings.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 82

You must use square brackets [] to create an array, just like with lists. The only difference is that the data type declaration is compulsory
in arrays. You can also create arrays with the new keyword.

/[lan array of integers

int [] array =[1, 2, 3, 4, 5]

/'l use the new keyword to create arrays

?def arrayl = new int[5]

/laccessing the first elenment of the array

//the indices start at O

def array2 =11, 2, 3, 4, 5]

def firstEl enment = array?2[O]

//you can even use | oops to mani pul ate arrays

def array3 [1, 2, 3, 4, 5]

for (int i 0; i < array.length; i++) {
println array[i]

}

You can use the functions we discussed, such as collect, findAll, each, inject, and more, with arrays as well.

Chapter 10: Groovy Scripting Regular Expressions

Groovy supports regular expressions through the use of the java.util.regex package. This package allows you to create, manipulate and
search for regular expressions through inbuilt classes and methods.

A regular expression is a pattern that defines a set or subset of strings. You can use regular expressions in a variety of ways for different
purposes. For instance, find all instances of a particular word, phrase, or pattern in a large block of text, extract data from strings, and
even replace a certain block of text with another block.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 83

Regular expressions in Groovy can be denoted with a /.../, where the dots represent the pattern. For instance, the regular expression
/world/ matches the string “world” wherever it occurs.

To search for a regular expression within a string, you can use the =~ operator.
You can also use the ==~ operator to match a regular expression against a string and return true or false.

You can use various special characters in regular expressions to create and match complex patterns. The most common ones are

Character What it does
Matches any character except a newline

*

Matches the preceding character O or more times

Matches the preceding character 1 or more times

Matches the preceding character zero or one time

Matches any digit (0-9)

Matches any whitespace character (space, tab, newline, etc)
Matches any word character (letter, digit, underscore)

EC/JQ_'\)+

You can use certain characters to match another set of characters. For instance, [aeiou] matches any vowel whereas [a-z] matches any
lowercase character.

You can also include grouping or alternation of characters. To group, use parentheses and to alter use the pipe (|) character. For
instance, the regular expression /(hello | world)/ matches either “hello” or “world”.

Consider an example where you want to search for all the strings that match the pattern of an email address.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 84

def text = "Please contact us at info@xanple.comor support @xanpl e.conf
def enmmil Regex = /b[w. %]+@w. -] +.[a-zA-Z] {2, 4} b/
def matcher = (text =~ emuail Regex)

mat cher. each { match ->
println "Found enail address: ${match[0]}"
}

Groovy supports a lot of inbuilt methods to work with regular expressions, such as find, findAll, replaceAll, split, etc.

Regular expressions can be complex and difficult to read, so it's important to use them with caution. They can also be computationally
expensive, so make sure you consider their performance in performance-intensive code or while dealing with large strings.

Phew! That's a lot of coding we already learned.
But during this coding journey, have you yet encountered an error message that left you puzzled already?

The next step is to learn exception handling in Groovy scripting; so you don’t crash your program right away (hopefully never, fingers
crossed).

Using Groovy Regular Expressions in Exalate Scripting

Regular expressions allow you fine-grained control over matching patterns within strings.

This can be particularly useful when you need to send information between two applications based on specific sub-string or pattern
matches.

One example of regular expressions (Regex) in Exalate is when you want to sync only selected comments that match a filter.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 85

Let’s say you only want to send those comments that include the word ‘[SEND]’ in the comment text. Any other comments should not
be sent.

replica.coments = issue.comments.findAll {it.body =~ /[SEND:]*/ }

Chapter 11: Groovy Exception Handling

Programs crash all the time, and the only way for it to recover is to handle exceptions gracefully.

Exceptions are errors or events that occur during the execution of a program causing it to behave in unexpected ways. These
exceptions can occur due to various reasons, such as file i/o errors, invalid input, wrong program logic, network errors, etc.

Groovy supports “try-catch” blocks to handle exceptions. The “try” block includes the code that might throw an exception, and the
“catch” block contains the code to handle the exception.

When an exception occurs in the try block, the code execution stops in that block and the program jumps to execute the code in the
“catch” block.

An example of a try-catch block:

ption occurred: ${e.message}"

println "An
} finally {

// optional code to run

println "This code alwa

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 86

As seen in the example, the try block attempts to divide a number by 0, resulting in an ArithmeticException. The catch block catches

the exception and prints out the required message. The "finally" block is optional and is executed regardless of whether the exception
occurs or not.

You can have multiple catch blocks to catch different types of exceptions.

In addition to the general try-and-catch block, you can also throw your own exceptions using the “throw” keyword. It allows you to
create custom exceptions and handle them in a manner you deem fit.

Exception handling is important for any programming language to write more reliable and robust code.

Chapter 12: Groovy Testing Framework: the Assert Statement

The Groovy programming language is loaded with awesome features that are super handy for test-driven development. Yeah, it's true!

When it comes to writing tests and making sure your code is rock solid, Groovy has got your back. It offers a bunch of cool features and
state-of-the-art testing libraries and frameworks that have proven to be valuable in the world of test-driven development.

One such feature is the “assert” keyword.

An assertion (or an assert statement) is a nifty tool that lets you test your assumptions about your program. Let’s say you're working on
a method to calculate the ability of an individual to vote. With assertions, you can make sure the age of the person is always greater
than 18.

Basically, you create an assertion with a statement that should be true when it is executed. If the statement turns out to be false, the
system will throw an error your way. By double-checking that the statement is true, the assert keyword gives you that extra confidence
that your program is error-free and behaving just as you expect it to.

‘ exalate © Exalate 2024

https://docs.groovy-lang.org/next/html/documentation/core-testing-guide.html
https://docs.groovy-lang.org/next/html/documentation/core-testing-guide.html
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 87

Here's the cool part: writing assertions while you're coding is like a superpower to finding and fixing bugs.
So how do you use the assert keyword in Groovy?

There are two forms in which you can use the assert keyword.

The first form is:

assert Expressionl

Where Expression1 is just a fancy term for a Boolean expression. When your program hits this assertion, it checks if Expression1 is true.
If the expression is true, it continues executing the next statement in the program and doesn’t print anything. If it's false, then an
AssertionError is thrown.

And the second form of the assert statement is:

assert Expressionl: Expression2

Where Expression1 is still our older Boolean expression and Expression2 is something that actually has a value. It can’t be something
like a void method call. Bummer!

But here’s where it gets interesting. You can use this second form of the assert statement to display a super cool detailed message for
the AssertionError. To do this, the program will grab the value of Expression2 and use it as an error message. That way, you'll get more
details about what went wrong in your assertion. Pretty handy, right?

Consider the following code:

def age = 15
assert age >= 18: "Age should be 18 or above"

If the age isn’t above 18, you'd be thrown a pretty direct error message as to why your assertion failed.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 88

The detailed message is all about capturing and sharing the details of the assertion failure. It can help you diagnose and fix the error
that made the assertion go kaput. It isn’t catered toward regular users but is to be viewed alongside your stack trace and the source
code. So you don’t have to worry about making it more understandable for the general public.

Chapter 13: JSON Handling in Groovy

JSON stands for JavaScript Object Notation and is a lightweight format for storing and transporting data.

It's a popular way to represent data in a human-readable format. It consists of data in the form of key-value pairs, as we saw with Groovy
Maps.

JSON formatting in Groovy is extremely useful. It simplifies the handling and manipulation of JSON data. It enhances the capabilities of
Groovy when working with JSON-based technologies and facilitates data exchange, configuration management, testing, and more.

In Groovy, you can work with JSON easily because it has in-built support for handling JSON data.
JsonBuilder Class

If you have your data handy, Groovy can convert it into JSON using the JsonBuilder class. You can start using this class by creating its
object and using its methods to build your JSON structure.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner’'s Guide to Mastering the Basics

Page 89

Note: toPrettyString() is optional here. It’s only used to add some indentation and line breaks to make the JSON more
readable.

JsonSlurper Class

JsonSlurper is another fantastic class in Groovy that makes working with JSON data a breeze. It allows you to parse JSON strings and

convert them into Groovy objects that you can easily manipulate and access.

Groovy web console

Woo~NG Ul A WMNBRE

import groovy.json.JsonSlurper

def jsonString = """ {
"name": "John Doe",
"age": 30,

"city": "New York" } '''

def jsonSlurper = new JsonSlurper()
def jsonObject = jsonSlurper.parseText(jsonString)

println "Name: ${jsonObject.name}"
println "Age: ${jsonObject.age}"
println "City: ${jsonObject.city}"

Execute script P New script Publish script | View recent scripts |

(Result [outpu:stackurace [

ame: John Doe
ge: 30
ity: New York

‘y exalate © Exalate 2024

BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 90

In the example above, we create an object of the jsonSlurper class and call the parseText method of that class. We pass the JSON string
to the method.

All you need to do now is to access individual elements of the JSON object using the dot (.) operator. So you can access the name via
jsonObject.name.

And there you have it!

With JsonSlurper you can parse JSON strings and work on the data as Groovy objects. The JsonSlurper class also has a lot of other
helpful methods like parse(File file) to parse the JSON data structure given within a file.

JSON Formatting Using Exalate

We saw earlier that a replica is the payload passed from one system to another. It contains the data and the metadata in the JSON
format.

There are two replicas per platform: the local replica and the remote replica.
Let me explain how Exalate accesses and works with the replica with an example.

Let’s sync the priority field from ServiceNow to Jira. If you view the replica on the ServiceNow instance, the local replica is the one in
ServiceNow and the remote replica will be the one on the Jira side. Similarly, the replicas will be interchanged if you view them in the
Jirainstance.

The replica on the ServiceNow instance looks like this:

‘ exalate © Exalate 2024

http://docs.groovy-lang.org/latest/html/gapi/index.html?groovy/json/JsonSlurper.html
http://docs.groovy-lang.org/latest/html/gapi/index.html?groovy/json/JsonSlurper.html
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics

The image shows the hublssue (aka the replica) with all the incident fields.

Now, our use case is to sync the priority from ServiceNow to Jira.

The first thing you must do is send the priority information in the “Outgoing sync” in ServiceNow.

ServiceNow Outgoing Sync

The following incident information is sent from ServiceNow to Jira. You can see the priority being sent too.

» ServiceNow_to_lira
@ Active

Rules Triggers Statistics Info

v Outgoing sync ©

1~ class SlaRecord {

2 String name

3 String breach_time

4 String stage

S String linkValue

& 1

7

8 - if(entity.tableName "incident") {

9 replica.key = entity.key
1@ replica.summary entity.short_description
11 replica.description = entity.description
12 replica.attachments = entity.attachments
13 replica.comments = entity.comments
14 replica.state = entity.state
1S replica.priority = entity.priorityValue
16 replica.entityType = "incident"
17

‘y exalate

© Exalate 2024

< Back to Connections

Page 91

BOOK DEMO

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 92

Now, if you check the replica details, you can get the priority information in priority.name tag.

Jira Incoming Sync

Accordingly, the “Incoming sync” for getting the priority details in Jira will be.

def priorityMapping = |

/1 Snow incident priority <-> Jira issue priority
"1 - Critical": "Hi ghest",

"2 - High": "H gh",

"3 - Moderate": "Mediunt,

"4 - Low': "Low',

"5 - Planning": "Lowest"

]

[l set default priority in case the proper priority could not be found

def defaultPriority = "Low'

def priorityNane = priorityMapping[replica.priority?. name] ?: defaultPriority // set default priority in case
i ssue.priority = nodeHel per.getPriority(priorityNanme)

Here, we have mapped the priorities in ServiceNow to the priorities in Jira. After which, the issue priority in Jira is assigned based on the

mapping.

Chapter 14: Groovy Scripts Networking|]

You can create a host of networked applications using the powerful set of networking features that Groovy supports.

Networking in Groovy is built on top of Java's networking APIs. So if you are familiar with Java's networking concepts, this one should be
easy for you.

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 93

Some of the key features in Groovy networking include:

Support for HTTP/ HTTPS client: Groovy provides an HTTP(s) client library making it easy to request and receive responses. This
library supports both HTTP and HTTPS and allows you to set cookies, headers, and other parameters.

Socket programming: You can create and manage sockets easily with Groovy. Sockets are endpoints for communication between
two systems over a network. You can create both client and server-side sockets and use them to send and receive data.

URL processing: You can use a rich set of classes for working with URLs. You can create and manipulate URLs, parse query
parameters, and extract information from the URL.

DNS lookup: Groovy provides classes for DNS lookups.

Email handling: You can use the JavaMail API to send email messages using SMTP, POP3, and IMAP protocols.

Groovy provides you with powerful networking features that make it easy to create and work with networked applications and get your
job done.

Using Groovy Networking Concepts in Exalate

Since Exalate supports Groovy-based scripts to extract, transform and exchange information between multiple platforms, it can use
Groovy's networking features in many ways.

Some common examples of HTTP client requests for information exchange are:

¢ How to make any Jira Cloud REST API calls with the Jira Cloud HTTP client.

REST APIs used by Exalate to access ServiceNow.

How to use REST APIs for monitoring purposes.

How to sync Tempo worklogs using external scripts in Jira Cloud.

How to perform multiple consecutive operations in one synchronization with the store(issue) function in Exalate.

The store(issue) function is handy for peculiar use cases. One example is, where the Jira workflow configuration does not let you

‘ exalate © Exalate 2024

https://docs.exalate.com/docs/how-to-make-any-jira-cloud-rest-api-call-with-the-jira-cloud-http-client
https://docs.exalate.com/docs/what-rest-api-is-used-by-exalate-to-access-servicenow
https://docs.exalate.com/docs/how-to-use-rest-apis-for-monitoring-purposes
https://docs.exalate.com/docs/syncing-tempo-worklogs-in-jira-cloud
https://docs.exalate.com/docs/how-to-use-a-storeissue-function
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 94

make changes to an issue when it is closed. To make changes, you must open the issue first. The store(issue) function will check
the issue status and depending on the status execute different sets of actions.

e Making an HTTPS call to an external service
For instance, you need to map the GitHub user ID to a Jira email address and vice versa. You need to keep the mapping in an
external service that provides endpoints that you can call via an HTTPS link.

You can also perform URL Processing using external scripts in the Jira cloud.

So are you ready to explore the infinite possibilities with Groovy scripting and be amazed at what you can achieve?

Whether you are a seasoned developer or just getting started, there’ll always be something Groovy has to offer.

Chapter 15: Best Practices and Tips for Groovy Scripting Development

¢ Like we haven't stressed enough the flexibility that Groovy offers. Use some cool features it supports like closures, dynamic
typing, safe navigation operator, and other in-built methods like find(), each(), etc. Use them fully and wisely to get the best out of
Groovy.

e Groovy allows operator overloading, for +,-,*,/ and %. This can be used to create domain-specific languages (DSLs).

e Groovy supports the @Delegate annotation that allows you to delegate method calls to another object. This can be useful to
create adapters or for providing a simpler interface to complex objects.

e Groovy allows you to modify the behavior of objects at run-time using metaprogramming. You can use it to create dynamic DSLs
or for adding some other behavior to objects at run-time.

We have been working with the Groovy console for quite some time now. It's a fantastic tool to quickly test out code snippets and a
perfect way to play around with Groovy and learn more about the language. You'll love how easy it is to use. Give it a try and see for
yourself.

‘ exalate © Exalate 2024

https://community.exalate.com/questions/20120631/how-to-make-an-https-call-to-an-external-service
https://stash.idalko.com/projects/EESFJS/repos/exalate-external-scripts-library-for-jira-cloud/browse/JiraClient.groovy
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
https://docs.groovy-lang.org/latest/html/api/groovy/lang/Delegate.html
https://www.tutorialspoint.com/groovy/groovy_annotations.htm
https://groovy-lang.org/metaprogramming.html
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 95

Chapter 16: Most Popular Exalate Scripts

1. Transformers - Converting HTML to Wiki and Others

The most common example of Groovy scripts in Exalate can be for transformers. These transformers can convert information from one
specific format to another, such that it is understood by the destination instance.

For instance, every application has a different format, Jira - Wiki, Azure DevOps, Salesforce and ServiceNow - HTML and GitHub, and
Zendesk - Markdown. Transformers help convert the HTML format to Wiki, the Markdown format to Wiki, or the Wiki format to HTML.

Following are the different transformers that can be implemented via Exalate scripting:

1.1. HTML to Wiki

1.2. Markdown to Wiki

1.3. Wiki to HTML

2. Syncing User Mentions, Rich Text, and Inline Images

2.1: Syncing User Mentions

It's common knowledge that team members often tag (or mention) each other in comments for various reasons.

‘y exalate © Exalate 2024

https://stash.idalko.com/projects/EXAPUB/repos/transformers/browse/src/main/groovy/com/exalate/transform/HtmlToWiki.groovy
https://stash.idalko.com/projects/EXAPUB/repos/transformers/browse/src/main/groovy/com/exalate/transform/MdToWiki.groovy
https://stash.idalko.com/projects/EXAPUB/repos/transformers/browse/src/main/groovy/com/exalate/transform/WikiToHtml.groovy
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 96

You can use Exalate scripts to sync user mentions in comments between systems like Jira, Azure DevOps, Salesforce, etc.

The following scripts would do the magic.

Note: The only pre-requisite for this use case is that the user property (like email IDs) should be the same in both
systems.

Azure DevOps Incoming Sync For User Mentions
String start 1="#exal at e_coment #"

String endl="#exal at e_comment _end#"
for(coment in replica.addedConments)

def matcher = coment. body =~ /(?
def userl d=nodeHel per. get User ByEnmai | (X, " Proj ect _key") ?. key
i f(userld){
def string ="

def test = comment. body.replaceAl(startl+ x + endl, string)
comrent . body = test

}
}
}

Azure DevOps Outgoing Sync for User Mentions

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 97

def newConment
def all Comments = workltem conments. col | ect {
conment ->
def comrent 1=comrent . body
def matcher = commentl =~ /(?
def userl d=nodeHel per. get User (x, "project_key")?. enmai |
if (userld)

def matcherl = coment =~ /

<a href="#" data-vss-nention="version: 2.0, ${x}.*? </ xnp>/
mat cher 1. each{
Y- >
comment 1=comment 1. repl aceAl | (y," coment. body="conmment 1" comrent replica.coments="nodeHel per.stripHtm Fr
</ a>

Jira Incoming Sync For User Mentions

for(coment in replica.addedConments) {
def newComment Body=comrent . body
def matcher = comrent.body =~ /[~accountid: ([a-zA-Z0-9+. -]+@a-zA-Z0-9. -]+.[a-zA-Z0-9 -]1+)]/
mat cher . each {
X->
def target = nodeHel per.getUserByEmail (x[1])?. key ?:x[1]
newComment Body = newConment Body. repl ace(x[1], t arget)

comrent . body= newConment Body

def addedComments = comment Hel per. ner geComment s(i ssue, replica)

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 98

Jira Outgoing Sync For User Mentions

String start1="#exal ate_comment #"
String endl="#exal ate_coment _end#"

replica.coments = issue.coments. collect {
coment ->
def matcher = commrent.body =~ /[~accountid: ([w.-]+)]/

def newComment Body = conment. body

mat cher . each {
target = nodeHel per.getUser(it[1])?.email ?: "Stranger"
target = start 1+t arget +endl
newConmrent Body = newConment Body. repl ace(it[0], target)

comment . body = newComment Body
coment

}

The details of what happens behind the scenes in this use case can be found here.

You can also sync user mentions from Jira Cloud comments to Salesforce chatter feed.

2.2 Syncing Rich Text and Inline Images

Another common requirement is to handle rich-text and inline images and sync them correctly over to the destination instance.
We'll consider Jira and Azure DevOps for this use case as well.

You can use the following code.

‘ exalate © Exalate 2024

https://community.exalate.com/questions/58495077/sync-user-mentions-in-comments-between-jira-cloud-and-ado
https://community.exalate.com/questions/58495591/sync-user-mentions-in-comments-from-jira-cloud-to-salesforce
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 99

Jira Outgoing Sync For Rich Text and Inline Images

replica. description = nodeHel per.getH nml Fi el d(i ssue, "description")

Azure DevOps Incoming Sync For Rich Text and Inline Images

i f(firstSync){
/1l Set type nanme fromsource entity, if not found set a default
wor kl tem proj ectKey = "Denp"
wor kl tem t ypeNane = "Task"

wor kl tem summary
wor kltem attachnent s

replica. summary
at t achment Hel per. mergeAttachnment s(workltem replica)
wor kIt em comrent s coment Hel per. ner geComment s(workltem replica)
wor kl tem | abel s replica.l abel s
def await = { f -> scal a.concurrent. Awai t $. MODULES$. resul t (f, scal a.concurrent. duration. Duration. apply(1, jave
def creds = await(httpCient.azureCient.getCredentials())
def issueTrackerUrl = creds.issueTrackerUrl ()
def processinlinelmges = { str ->

def processLt@& Tags = {

def counter =0

while (counter """.toString())

} el se { gage nol/|f ound or type unknown
def tnmpStr = str.replace(match[0], """ """otoString())
if (tnpStr == str) {

br eak;
}
str = tnpStr

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 100

}

count er ++

}

str

}

def processNol nage = {
def counter =0
whil e (counter /)

if (matcher.size() """.toString())

} el se { gage not/|f ound or type unknown
def tnmpStr = str.replaceAl(match[0], """ "ttotoString())
if (tnpStr == str) {

br eak;
}
str = tnmpStr
}
counter ++
}
str

%f (str == null) {

return nul
}
str = processLt G Tags()
str = processNol mage()

| og. error ("#processi mages $str")
str

}

String value = processlnlinel nages(replica.description)
wor kl t em descri pti on=val ue

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 101

3. Syncing a Parent-Child Relationship

Agile and project management systems like Jira and Azure DevOps often have entities that have a parent-child relationship with one
another. The relationship can also have multiple levels of hierarchy.

We'll discuss two examples of how Exalate maintains a parent-child relationship.

The relationship in Azure DevOps is Epic @ Feature @ Task. The same needs to be mirrored as Story @ Task @Bug in Jira on-premise. You can
see behind the scenes of this use case in this community post.

Azure DevOps Outgoing Sync

replica. parentld = workltem parentld
def res = httpdient.get("/_apis/wt/workitens/${workltem key}?$expand=rel ati ons&api - versi on=6. 0", fal se)
if (res.relations !'= null){

replica."relation” = res.relations[0].attributes. nane
replica."relationid" = (res.relations[0].url).tokenize('/")[7]
}

Jira incoming sync

.jira.issue.link.|ssueLi nkManager
i mport com atl assi an. jira.conponent. Conponent Accessor
import comatlassian.jira.security.JiraAuthenticati onContext
inmport comatlassian.jira.issue.link.|ssuelLi nkTypeManager
inmport comatlassian.jira.issue.link.IssueLinkType
i nport org.slf4j.Logger
class Logln {
static logln(u) {

i mport com atl assi an. j
J

‘ exalate © Exalate 2024

https://community.exalate.com/display/exacom/Jira+OnPrem+Azure+DevOps%3A+Multi-level+Issue+Hierarchy
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 102

def authCtx = com atl assi an.jira.conponent. Conponent Accessor. getJiraAut henti cati onCont ext ()
try {

[1Jdira 7

aut hCt x. set Loggedl nUser (u)
} catch (Exception ignore) {

/1l Jira 6

/ I noi nspecti on G oovyAssi gnabilityCheck

aut hCt x. set Loggedl nUser (u. get Di rect oryUser ())

}

}

static R tryLoglnFinallyLogQut(Cd osure fn) {
def authCtx = com atl assi an.jira.conmponent. Conponent Accessor. get Ji raAut henti cati onCont ext ()
def proxyAppUser get ProxyUser ()
def | oggedl nUser aut hCt x. get Loggedl nUser ()

try {
| ogl n(pr oxyAppUser)
fn()

} finally {

| ogl n(1 oggedl nUser)

}
static getProxyUser() {

def nserv = com atl assi an.jira.conponent. Conponent Accessor . get OSG Conponent | nst anceOf Type(com exe
nserv. proxyUser

}

cl ass Createl ssue {
static def |log = org.slf4j.LoggerFactory. get Logger("com exal ate. scripts. Epic")
private static def doCreate = {
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue replica,
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssue,
com exal at e. api . domai n. request . | SyncRequest syncRequest,
com exal at e. node. hubobj ect. vl 3. NodeHel per nodeHel per,

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 103

com exal at e. basi c. donmai n. hubobj ect . v1. Basi cHubl ssue i ssueBef oreScri pt,
com exal at e. api . domai n. | NonPer si stent Replica renot eReplica,
Li st traces,
Li st bl obMet adat aLi st
Logger log ->
def firstSync = com exal ate. processor.jira.JiraCreatel ssueProcessor. creat eProcessor Cont ext . ge
def issuelLevel Error = { String nsg ->
new com exal at e. api . excepti on. | ssueTracker Excepti on(nsg)

}
def issuelLevel Error2 ={ String nsg, Throwable c ->
new com exal at e. api . excepti on. | ssueTracker Excepti on(nsg, c)

}
def toExlssueKey = { comatlassian.jira.issue. Mutabl elssue i ->
new com exal at e. basi c. domai n. Basi cl ssueKey(i.id, i.key)
}
final def authCtxlnternal = com atl assian.jira.conponent. Conponent Accessor. getJiraAut henti cat
final def imnternal = comatl assian.jira.conponent. Conponent Accessor. i ssueManager
final def um nternal = com atl assi an.jira.conponent. Conponent Accessor. user Manager
final def nservinternal = com atl assian.jira.conponent. Conponent Accessor. get OSG Conponent | nst

final def hohflnternal2 = com atl assi an.jira.conponent. Conponent Accessor. get OSG Conponent | nst
/I noi nspecti on GroovyAssi gnabilityCheck
final def hohlnternal2 = hohflnternal 2. get (renot eRepl i ca. payl oad. ver si on)

if (issue.id !'= null) {
def existinglssue = imnternal.getlssueObject(issue.id as Long)
if (existinglssue !'= null) {

return [existinglssue, toExlssueKey(existinglssue)]

}

def proxyAppUserlnternal = nservinternal.getProxyUser()
def | oggedl nUser = aut hCt xl nt ernal . get Loggedl| nUser ()

| og. debug("Logged user is " + | oggedl nUser)

def reporterAppUser nul

if (issue.reporter !'=null) {

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 104

reporter AppUser = uml nternal.getUserByKey(issue.reporter?.key)

}
reporter AppUser = reporterAppUser ?: proxyAppUserlnternal
i ssue. project = issue.project ?: ({ nodeHel per. get Project (issue. projectKey) })()
i ssue.type = issue.type ?: ({ nodeHel per. getlssueType(issue.typeNane) }) ()
def jlssuelnternal = nul
try {
Logl n. | ogl n(report er AppUser)
if (issue.id !'= null) {
def existinglssue = imnternal.getlssueCbject(issue.id as Long)
if (existinglssue !'= null) {

i ssue.id = existinglssue.id
i ssue. key = exi stingl ssue. key
return [existinglssue, toExlssueKey(existinglssue)]

}

def cir
try{

cir = hohlnternal 2. creat eNodel ssueWt h(i ssue, hohl nternal 2. creat eHubl ssueTenpl ate(),
} catch (M ssingMet hodException e){

cir = hohlnternal 2. creat eNodel ssueWt h(i ssue, hohlnternal 2. creat eHubl ssueTenpl ate(),

def createdl ssueKey = c
jlssuelnternal = imnternal.getlssueCbject(createdl ssueKey.id)
if (issue.id !'= null) {
def ol dl ssueKey = jlssuel nternal.key
def ol dlssueld = jlssuelnternal.id
try {
jI'ssuel nternal . key = issue. key
jIssuelnternal.store()
} catch (Exception e) {
log.error("""Failed to sync issue key: ${e.nessage}. Please contact Exal ate Suppc
i M nternal . del et el ssue(proxyAppUserinternal, jlssuelnternal as comatlassian.jire

ir.getlssueKey();

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 105

}
} . . .
issue.id = jlssuelnternal.id
i ssue. key = jlssuel nternal.key

return [jlssuelnternal, toExlssueKey(jlssuelnternal)]
} catch (com exal ate. api . exception.|ssueTracker Exception ite) {

if (firstSync && jlssuelnternal !'= null) {
i M nternal . del et el ssue(proxyAppUserinternal, jlssuelnternal as comatlassian.jira.iss
}
throw ite
} catch (Exception e) {
if (firstSync && jlssuelnternal !'= null) {
i M nternal . del et el ssue(proxyAppUserinternal, jlssuelnternal as comatlassian.jira.iss
}
t hrow i ssueLevel Error2("""Failed to create issue: ${
e. nessage
}. Please review the script or contact Exal ate Support""".toString(), e)
} finally {
Logl n. I ogl n(1 oggedl nUser)
}
/**
* @ar am whenl ssueCreatedFn - a cal |l back cl osure executed after the i ssue has been created
* */

static com exal at e. basi c. domai n. Basi cl ssueKey creat g(
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue replica,
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssue,
com exal at e. api . domai n. request . | SyncRequest syncRequest,
com exal at e. node. hubobj ect. vl 3. NodeHel per nodeHel per,
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssueBef oreScri pt,
com exal at e. api . domai n. | NonPer si stent Repl i ca renot eRepl i ca,
Li st traces,
Li st bl obMet adat alLi st

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 106

G osur e> whenl ssueCr eat edFn) {
def firstSync = com exal ate. processor.jira.JiraCreatel ssueProcessor. creat eProcessor Cont ext. get()
def (_jlssue, _exlssueKey) = doCreate(replica, issue, syncRequest, nodeHel per, issueBeforeScript,
com atlassian.jira.issue. Mut abl el ssue jlssue = jlssue as comatl assian.jira.issue. Mitabl el ssue
com exal at e. basi c. domai n. Basi cl ssueKey exl ssueKey = _exl ssueKey as com exal at e. basi c. donai n. Basi ¢
try {

whenl ssueCr eat edFn()

Updat el ssue. update(replica, issue, syncRequest, nodeHel per, issueBeforeScript, traces, bl obM
} catch (Exception e3) {

final def imnternal = comatl assian.jira.conponent. Conponent Accessor. i ssueManager

final def nservinternal2 = com atl assi an.jira.conponent. Conponent Accessor. get OSG Conponent | ns

def proxyAppUser I nter nal nser vl nt ernal 2. get ProxyUser ()

if (firstSync & jlssue !'=null) {

i M nternal . del et el ssue(proxyAppUserinternal, _jlssue as comatlassian.jira.issue.lssue,

t hrow e3

return exl ssueKey

}

cl ass Updat el ssue {

private static def log = org.slf4).LoggerFactory. get Logger("com exal ate. scripts. Epic")

private static def doUpdate = { com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue repli ca,
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssue,
com exal at e. api . domai n. request . | SyncRequest syncRequest,
com exal at e. node. hubobj ect. vl 3. NodeHel per nodeHel per,
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssueBef oreScri pt
Li st traces,
Li st bl obMet adat aLi st,
com atl assian.jira.issue. Mut abl el ssue j I ssue,
com exal at e. basi c. domai n. Basi cl ssueKey exl ssueKey ->

try {
final def hohflnternal2 = com atl assi an.jira.conponent. Conponent Accessor. get OSG Conponent | nst

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 107

/I noi nspection GroovyAssi gnabilityCheck
final def hohlnternal 2 = hohflnternal 2. get("1.2.0")
final def nservinternal2 = com atl assi an.jira. conponent. Conponent Accessor. get OSG Conponent | ns
def proxyAppUserlnternal 2 = nservlnternal 2. get ProxyUser ()
| og.info("performng the update for the issue " + jlssue.key + " for renote issue " + rep
/[lfinally create al
def fakeTraces2 = comexalate.util.TraceUils.indexFakeTraces(traces)
def preparedl ssue2 = hohl nternal 2. prepareLocal Hubl ssueFor Appl i cati on(i ssueBeforeScript, i ssue
[/ @onnul | 11ssueKey issueKey, @onnull | Hubl ssueReplica hublssueAfterScripts, @Wwullable Str
> traces, @\onnull List bl obMetadatalList, |Relation relation

def resultTraces2
try{

resul t Traces2 = hohl nt ernal 2. updat eNodel ssueW t h(exl ssueKey, preparedl ssue2, proxyAppUser
} catch (M ssingMet hodException e){

resul t Traces2 = hohl nt ernal 2. updat eNodel ssueW t h(exl ssueKey, preparedl ssue2, proxyAppUser

traces. cl ear ()

traces. addAl | (resultTraces2 ?: [])

new Result (i ssue, traces)
} catch (com exal at e. api . exception.|ssueTracker Exception ite2) {

throw ite2
} catch (Exception e2) {

t hrow new com exal at e. api . exception. | ssueTracker Excepti on(e2. nessage, e2)
}

static Result update(com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue replica,
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssue,
com exal at e. api . domai n. request . | SyncRequest syncRequest,
com exal at e. node. hubobj ect. vl 3. NodeHel per nodeHel per,
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssueBef oreScri pt,
Li st traces,
Li st bl obMet adat aLi st
com atl assian.jira.issue. Mut abl el ssue j I ssue,

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 108

com exal at e. basi c. domai n. Basi cl ssueKey exl ssueKey) {
doUpdate(replica, issue, syncRequest, nodeHel per, issueBeforeScript, traces, blobMetadataList, jl

static class Result {
com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssue
Li st traces
Resul t (com exal at e. basi c. domai n. hubobj ect . v1. Basi cHubl ssue i ssue, java.util.List

traces) {
this.issue = issue
this.traces = traces
}
}
i nt createl ssueLink()({
if (replica.parentld || replica."relation"){

def parentLinkExists = fal se
if (replica.parentld)
flag = true
def | ocal Parent Key = nodeHel per. get Local | ssueKeyFronRenot el d(replica.parentld ?: replica?. "relationid" as
if (local Parent Key==null) return 1

final String sourcel ssueKey = | ocal Par ent Key
final String destinationlssueKey = issue. key
def |inkTypeMap = [

"Parent" : "Rel ates",

"Duplicate"” : "Duplicate"

String issueLi nkNane
i f (!parentLinkExists)
i ssueLi nkNanme = | i nkTypeMap[replica."relation"]
el se
i ssueLi nkNane = "Bl ocks"
final Long sequence = 1L
def | oggedl nUser = Conponent Accessor. jiraAuthenticati onContext.| oggedl nUser

‘ exalate © Exalate 2024

https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 109

def issuelLi nkTypeManager = Conponent Accessor. get Conponent (| ssueLi nkTypeManager)
def issueManager = Conponent Accessor. i ssueManager

def sourcel ssue = issueManager. getl ssueByCurrent Key(sour cel ssueKey)

def destinationlssue = i ssueManager. getl ssueByCurrent Key(desti nati onl ssueKey)
def avail abl el ssueLi nkTypes = i ssuelLi nkTypeManager . i ssueLi nkTypes

int i,f=999

for (i=0; i

Another use case is for Jira Cloud and Azure DevOps.

We can create issue links to other issues in Jira and define some kind of relationship between them. The use case revolves around
picking up the issueLinks and their relationships from Jira Cloud and transferring them over to Azure DevOps with the help of mapping.

4. Syncing Multiple Tickets to a Single Issue Using httpClient]

There is often a need to connect multiple customer tickets to a single development issue. There are different ways to achieve this using
Exalate.

Here, we'll use the httpClient method to sync multiple Zendesk tickets to a single Jira issue.

Zendesk Outgoing Sync

replica.custonfields."lssue to connect to" = issue.custonFields."lssue to connect to"
Jira incoming sync

def renotel ssueUrn =replica.custonfFields."lssue to connect to"?.val ue

i f(renotelssuelUrn && firstSync){

def locallssue = httpOient.get("/rest/api/2/issuel"+renotel ssuelrn)
i f(locallssue == null) throw new com exal at e. api . exception. | ssueTracker Exception("Issue with key "+renotel ¢

‘ exalate © Exalate 2024

https://community.exalate.com/display/exacom/Jira+Cloud+Azure+DevOps%3A+Issue+links+hierarchy+and+mappings
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 110

issue.id = local I ssue?.id
i ssue. key = | ocal | ssue?. key
return;

}
5. Syncing Insights Custom Field

You can sync custom fields created in Insights using Exalate.

In the following example, we'll sync an Assets custom Insight field in Jira on-premise. You can implement the same for Jira Cloud as
well, but the code for that is a little different.

Jira On-premise Outgoing Sync

/'l SETTI NGS

final def insightCustontieldNane = "Assets"
/1 END SETTI NGS

replica. cust onKeys.

"My Custom Field values as Strings" = issue.custontiel ds[i nsi ght CustonFi el dNane] ?. val ue?. col | ect {
v o->

def cfm = com atl assi an.jira. conponent. Conponent Accessor . get Cust onti el dvanager ()

def cf = cfm get CustonFi el dObj ect (i ssue. cust onFi el ds[i nsi ght Cust onti el dNane] . i d)
def cft = cf.getCustontiel dType()
def vStr = cft.getStringFronSi ngul ar Obj ect (V)
vStr

}
Jira On-premise Incoming Sync

[SETTI NGS
final def insightCustonfFieldName = "Assets"

‘ exalate © Exalate 2024

https://www.atlassian.com/licensing/insight-jira-service-management#general
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 111

/1 END SETTI NGS
i ssue. cust onFi el ds[i nsi ght Cust onFi el dNane] . val ue = replica. cust onKeys.
"My Custom Field values as Strings".collect {
String vStr ->
def cfm = com atl assi an. jira.conponent. Conponent Accessor . get Cust onti el dvanager ()
def cf = cfm get Custonti el dObj ect (i ssue. custonti el ds[i nsi ght Cust onti el dNane] . i d)
def cft = cf.getCustontiel dType()
def v = cft.getSingularObjectFronString(vStr)
%

}

Note: Both the incoming and outgoing sync scripts work for Jira on-premise only.
You can also sync multiple Insight custom fields with Exalate

Conclusion

Finally, we are at the end!

| hope you've enjoyed this journey through the world of Groovy and discovered just how amazing this language can be. From its ‘beauty
with brevity’ syntax to its versatile features, Groovy scripting is truly a language like no other.

Whether you're building web applications, automating your daily tasks, or just tinkering around, Groovy scripting has something to offer
for everyone. Amaze yourself and see what you can accomplish.

Till then, feel the groove and code your heart out!
Recommended Reads:

¢ API Integration: A Practical Guide to Maximizing Business Efficiency

‘ exalate © Exalate 2024

https://docs.exalate.com/docs/how-to-sync-insight-custom-fields
https://exalate.com/blog/api-integration/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

Groovy Scripting Made Easy: A Beginner's Guide to Mastering the Basics Page 112

¢ Integration as a Service (laaS): Everything Explained

e The Comprehensive Guide to iPaaS (Integration Platform as a Service)

¢ eBonding Integration: The Ultimate 2023 Guide to Flexible Data Sync

¢ The Definitive Guide to Cross-Company Integrations for IT Professionals

‘y exalate © Exalate 2024 BOOK DEMO

https://exalate.com/blog/iaas/
https://exalate.com/blog/ipaas/
https://exalate.com/blog/ebonding-integration/
https://exalate.com/blog/cross-company-integration-it-professionals/
https://staging.exalate.com/book-demo/?utm_medium=content_download&utm_source=exalate_ebook&utm_content=auto_ebook_33639

